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1. INTRODUCTION

This paper deals with the problem of feedback
control for systems with impulse controls. It is
concerned with damping the oscillations of a cas-
cade (suspended chain) of an arbitrary finite num-
ber of loaded oscillating springs through an impul-
sive force applied to a particular link. The system
has to be fully stopped at given finite time. The
solution is sought for in the form of a closed-loop
synthesized control strategy. The required form
of solution is reached by applying a respective
version of the Dynamic Programming equation
described through variational inequalities of the
Hamilton-Jacobi type. The feedback control here
results in a finite number of strokes (impulses)
which stop the system at given time. A numer-
ical scheme for calculating the solution is then
described. The final part deals with the limit case,
when the time allowed for controlling the system
tends to infinity.

1 This work is supported by the Russian Foundation for
Basic Research (grant 06-01-00332). It has been realized
within the programs “State Support of the Leading Scien-
tific Schools” (5344.2006.1) and “Development of Scientific
Potential” (2.1.1.1714).
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Fig. 1. The chain of springs to be controlled in the
equilibrium state (left) and in an arbitrary
state (right)

2. THE PROBLEM

We consider the problem of fully stopping the
oscillations of a suspended chain of a finite number
of loaded springs by applying only an impulse
control force to a particular link (Fig. 1 shows



control applied to the lower end of the chain).
The chain must be brought to an equilibrium in
given finite time, so that this is not a problem of
asymptotic stabilization.

Apart from the springs, the chain also includes
given loads attached in between the springs. We
assume that the masses of springs are negligibly
small as compared to those of the loads. The
upper end of the chain is rigidly attached to a
fixed suspension. Then the oscillations of the chain
could be described by the following system of
second-order ODEs:
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















m1ẅ1 = k2(w2 − w1) − k1w1,

miẅi = ki+1(wi+1 − wi) − ki(wi − wi−1)

mνẅν = kν+1(wν+1 − wν)−

kν(wν − wν−1) +
dU

dt
,

mN ẅN = −kN (wN − wN−1),

(1)

when t > t0. Here N is the number of springs
which are numbered from top to bottom. The
loads are numbered similarly, so that the i-th
load is attached to the lower end of the i-th
spring. wi is the displacement of the i-th load
from the equilibrium, mi is the mass of the i-
th load, ki is the stiffness coefficient of the i-
th spring. The gravity force enters (1) implicitly
through determining the lengths of the springs at
the equilibrium.

Here dU/dt is the generalized derivative of the
generalized control U(·) ∈ BV [t0, t1] which is
applied to the ν-th load. Symbol BV [t0, t1] stands
for the space of functions of bounded variation.

Throughout this paper we assume that the trajec-
tories and their derivatives are left-continuous.

The initial state of the chain at time t0 is given
by the displacements w0

i and the velocities of the
loads ẇ0

i :

wi(t0) = w0
i , ẇi(t0) = ẇ0

i . (2)

The equations (1) may be also interpreted as a
spatial discretization of a one-dimensional wave
equation for a string with fixed left end and a
control force applied to the free right end:

ρ(ξ)wtt(t, ξ) =
[

E(ξ)wξ(t, ξ)
]

ξ
, t > t0, 0 < ξ < L;

w(t, 0) = 0, wξ(t, L) = E−1(L)
dU

dt
, t > t0;

w(t0, ξ) = w0(ξ), wt(t0, ξ) = ẇ0(ξ), 0 6 ξ 6 L.

(Here w(t, ξ) is the displacement of point ξ at
time t; each point ξ of the string is characterized
by the value of the Young modulus E(ξ) and
the mass density ρ(ξ).) Therefore, the presented
approach may be also useful for investigating
problems of impulse boundary control for the wave

equation.

Problem 1. (Of Open-Loop Control). Find gener-
alized control U∗(·) ∈ BV [t0, t1], such that func-
tional

J(U(·)) = Var
[t0,t1]

U(·) (3)

attains its minimum at U = U∗, under condition
that the trajectory of the system (1), emanated
from initial conditions (2), satisfies the terminal
conditions wi(t1 + 0) = 0, ẇi(t1 + 0) = 0.

Note that here time t1 is fixed.

The open-loop control problem 1 (see Krasovski
(1968))is well studied. In particular, it was proved
that there exists an optimal control with number
of impulses not exceeding 2N (Neustadt 1964).

In this paper we will be interested in finding the
control in feedback form. Denote x = (w, ẇ) ∈
R2N .

Definition 2. A closed-loop impulse control is the
pair U = (J, v), where J ⊆ [t0, t1] × R2N is the
jump set, and v : J → R is the jump amplitude.
The latter should satisfy the following condition:

(t, x + B(t)v(t, x)) 6∈ J, ∀(t, x) ∈ J. (4)

The new terms introduced here are clarified by
the next definition.

Definition 3. For a given initial condition (2), an
open-loop control U(·) ∈ BV [t0, t1],

dU(t) =

s
∑

i=1

viδ(t − ti) dt,

is consistent with the closed-loop control (J, v), if
it satisfies the following conditions (assuming that
x(ti − 0) = x(ti)):

• (ti, x(ti)) ∈ J, i = 1, s;
• vi = v(ti, x(ti)), i = 1, s;
• (ti, x(ti + 0)) 6∈ J when i = 1, s.

Here x(·) is the trajectory generated by control
U(·) and initial condition (2). Condition (4) pro-
hibits successive jumps at the same time moment,
i.e. ti 6= tj when i 6= j.

Problem 4. (Of Closed-Loop Control). Find
a closed-loop impulse control U = (J, v), such
that for any initial condition (2), any open-loop
control U(·) consistent with U solves Problem 1.

In problems 1 and 4 the functional J and the
terminal constraint may be replaced with a func-
tional of generalized Meier–Bolza type:

J(U(·)) = Var
[t0,t1]

U(·) + ϕ(x(t1 + 0)).

Here ϕ : R2N → R ∪ {+∞} is a proper closed
convex terminal functional. The latter allows to



formulate the optimality principle later. A par-
ticular choice of ϕ(x) = I (x | {0}) leads to the
problems of the above 2 .

3. THE SYSTEM

Before proceeding with solution, we provide some
details on the system.

First, we rewrite the original system (1) in the
normalized matrix form. To do this, we introduce
an extended state vector x ∈ Rn, n = 2N , defined
by (x1, . . . , xN ) = w, (xN+1, . . . , x2N ) = ẇ. Then

dx(t) = Ax(t) dt + b dU(t), (5)

x(t0) = x0 =

(

w0

ẇ0

)

,

A =

(

0 I
−M−1K 0

)

, M =







m1

. . .

mN






,

K =















k1 + k2 −k2

−k2 k2 + k3 −k3

. . .
. . .

. . .

−kN−1 kN−1 + kN −kN

−kN kN















,

b = (0, . . . , 0, m−1
ν , 0, . . . , 0)T .

The singular value decomposition for symmetric

matrix A0 = M−
1
2 KM−

1
2 is

A0 = QΛQT , QQT = I, Λ = diag(λ1, . . . , λN ).

where the eigenvalues λi are positive (since A0

is positive definite) and different (since A0 is
tridiagonal). The columns of Q are eigenvectors
of A0: q(1), . . ., q(N), A0q

(j) = λjq
(j).

After a change of variables w = M−
1
2 Qw̄ (and,

respectively, x̄ = (w̄, ˙̄w)), the system (5) becomes

dx̄(t) = Āx̄(t) dt + b̄dU(t), (6)

x̄(t0) = x̄0 =

(

w̄0

˙̄w0

)

,

Ā =

(

0 I
−Λ 0

)

,

b̄ = m
−

1
2

ν (0, . . . , 0, q(1)
ν , q(2)

ν , . . . , q(N)
ν )T .

That is, the original system is reduced to N
harmonic oscillators with same control input:

{

˙̄xj = x̄j+N ,

dx̄j+n = −λj x̄j dt + bj dU(t),
j = 1, N.

Next we check the complete controllability

(Kalman 1960) property of the system.

2 By I (x | A) = 0 in A and +∞ elsewhere we denote the
indicator function of convex set A.

For matrices A ∈ Rn×n, B ∈ Rn×m denote
Φ(A, B) =

(

B AB . . . An−1B
)

. We need the
following auxiliary statement.

Lemma 5. System ẍ(t) = Ax(t) + Bu(t) is com-
pletely controllable if and only if the system
ẋ(t) = Ax(t) + Bu(t) is completely controllable.

Theorem 6. System (5) is completely controllable

if and only if q
(i)
ν 6= 0, i = 1, N .

PROOF. After applying Lemma 5 to (6), we
need to find the rank of Φ(Λ, b̄). We have

Φ(Λ, b̄) = m
−

1
2

ν







q
(1)
ν λ1q

(1)
ν . . . λN−1

1 q
(1)
ν

. . . . . . . . . . . . . . . . . . . . . . . . . .

q
(N)
ν λNq

(N)
ν . . . λN−1

N q
(N)
ν






.

Using the formula for determinant of Vander-
monde matrix, we have

detΦ(Λ, b̄) = m
−

1
2

ν

[

N
∏

i=1

q(i)
ν

]





∏

16i<j6N

(λj − λi)



.

Since all λj are different, we get the complete

controllability criterion: all q
(i)
ν are non-zero.

Corollary 7. In the case of equal masses and stiff-
ness coefficients — mi ≡ m, ki ≡ k, the sys-
tem (5) is completely controllable if and only if
gcd(ν, 2N + 1) = 1. In particular, this is always
the case when ν = 1, 2, N .

PROOF. Here the matrix A0 is

A0 =
k

m
Â0, Â0 =













2 −1 0 . . . . . . . . . . 0
−1 2 −1 . . . . . . . . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . −1 2 −1
0 0 0 . . . 0 −1 1













It is straightforward to check that the eigen-

vectors of Â0 are q
(i)
j = sin j(2i−1)

2N+1 π, i, j =

1, N , and the corresponding eigenvalues are

λi = 2
(

1 − cos 2i−1
2N+1π

)

. Taking into account that

q
(i)
j = sin(ν − j(2i−1)

2N+1 )π = sin 2ν(N+1−i)
2N+1 π we

see that the coordinates q
(i)
ν span the entire set

sin νi
2N+1π, i = 1, 2N . None of these values is zero

if and only if νi 6= 0(mod2N + 1), i ∈ 1, 2N .

Corollary 8. For ν = 1 and ν = N the system (5)
is completely controllable for arbitrary mi > 0,
ki > 0.

PROOF. Consider the case ν = 1 (for ν = N
the proof is similar). Let A0q = λq, q 6= 0,
q1 = 0. Then (A0q)1 = −k2q2 = 0, hence q2 = 0.
Continuing this process, we get qi = 0, i = 1, N ,
which contradicts our assumptions.



4. THE DYNAMIC PROGRAMMING
APPROACH

In this section, we recall some facts from on dy-
namic programming approach to impulse control
problems (see Daryin, Kurzhanski and Seleznev,
2005).

The value function V (t0, x0) of problem 4 is
the optimal value of J(U(·)) under given fixed
initial position (t0, x0). An extended notation
V (t0, x0; t1, ϕ(·)) will be also used to emphasize
the dependence of the optimal value V (t0, x0) on
terminal time t1 and terminal function ϕ(·).
Notation W (t0, x0) = W (t0, x0; t1, x1) will be
used for the minimal variation of problem (1) with
fixed right end x(t1 +0) = x1. As discussed above,
W (t0, x0; t1, x1) = V (t0, x0; t1, I ( · | {x1})). It
may be expressed as (Krasovski 1968, Kurzhanski
and Osipov 1969)

W (t0, x0; t1, x1) = sup
p∈Rn

〈

p, x1 − e(t1−t0)A x0

〉

maxt∈[t0,t1]

∣

∣bT e(t1−t)A p
∣

∣

.

Using the last formula, we have

V (t0, x0) = inf
x1∈Rn

{ϕ(x1) + W (t0, x0; t1, x1)}.

Here the infimum is attained, and the correspond-
ing optimal control exists.

The following statement is true:

Statement 9. The value function V (t0, x0) is con-
vex in x and its conjugate is given by

V ∗(t0, p) = ϕ∗(e(t0−t1)AT

p)+

+ I

(

e(t0−t1)A
T

p
∣

∣

∣ B‖·‖[t0,t1]

)

. (7)

Here B‖·‖[t0,t1]
is the unit ball in the semi-norm

‖p‖[t0,t1]
= max

t∈[t0,t1]

∣

∣

∣bT e(t1−t)AT

p
∣

∣

∣ ,

ϕ∗(p) is the Fenchel conjugate of ϕ(x) (Rockafellar
1970).

In particular, W (t0, x0; t1, 0) = ρ(x0 | Z [t0]),
where Z [t0] = e(t0−t1)A B‖·‖[t0,t1]

is the polar set,

ρ stands for the support function of a convex set.
Another representation of the value function is

W (t, x) = min
{

α > 0
∣

∣ α−1x ∈ X1[t]
}

, (8)

where X1[t] is the backward reachability domain

of the system (5) from point x(t1 + 0) = 0 under
constraint Var

[t,t1]
U(·) 6 1.

Using (7) one may prove the next result:

Theorem 10. The value function V (t, x; t1, ϕ(·))
satisfies the principle of optimality in the form

of the semigroup property. Namely, for each τ ∈
[t0, t1] we have:

V (t0, x0; t1, ϕ(·)) = V (t0, x0; τ, V (τ, ·; t1, ϕ(·))).

Note that, unlike problems without impulse con-
trols, in the general case V (t1, x; t1, ϕ(·)) 6 ϕ(x),
since from (7) it follows that

V ∗(t1, p) = ϕ∗(p) + I
(

bT p
∣

∣ [−1, 1]
)

.

For example, if ϕ(x) = I (x | {0}), then

V (t1, x; t1, ϕ(·)) =

{

‖x‖/‖b‖, x ‖ b;

+∞, otherwise
≤ ϕ(x).

Theorem 11. The value function V (t, x) is the
viscosity solution (Crandall and Lions 1983) to
the Hamilton–Jacobi–Bellman equation:

min {H1(t, x, Vt, Vx), H2(t, x, Vt, Vx)} = 0, (9)

V (t1, x) = V (t1, x; t1, ϕ(·)).

H1(t, x, ξt, ξx) = ξt + 〈ξx, Ax〉,
H2(t, x, ξt, ξx) = 1 −

∣

∣bT ξx

∣

∣ .

Due to (9), in any position (t∗, x∗) there are two
possibilities for the control. Either H1 = 0, and
the control may choose dU(t) = 0, or H1 > 0,
in which case it is necessary the H2 = 0, and
the control has a jump in direction −bT Vx. The
magnitude of the jump is to be selected in such a
way that after the jump we again have H1 = 0,
i.e.

dU(t) = −αbT Vx(t∗, x∗)δ(t − t∗) dt, (10)

H2(t
∗, x∗ − βbbT Vx(t∗, x∗)) = 0, β ∈ [0, α];

H1(t
∗, x∗ − αbbT Vx(t∗, x∗)) = 0.

The solution to Problem 4 is then

• J = { (t, x) | H1(t, x) > 0};
• v(t, x) = −αbT Vx, with α as defined above.

Remark 12. All results in this section are true for
the system (6), with A, b, x and V replaced by Ā,
b̄, x̄ and V̄ respectively.

5. A NUMERICAL ALGORITHM

Here we describe numerical algorithm for finding
the value function and control in case ϕ(x) =
I (x | {0}).
The polar set Z [t] may be written as

Z [t] =
⋂

τ∈[t,t1]

{

p
∣

∣

∣

∣

∣

∣bT e(t−τ)AT

p
∣

∣

∣ 6 1
}

.

Choose K + 1 time instants t = τ0 < τ1 < . . . <
τK = t1, then



Z [t] ⊆ Ẑ [t] =

=
⋂

τ∈{τ0,...,τK}

{

p
∣

∣

∣

∣

∣

∣bT e(t−τ)AT

p
∣

∣

∣ 6 1
}

. (11)

The set Ẑ [t] is an external approximation of the
polar set Z [t], therefore the function

V̂ (t, x) = sup
p∈Ẑ [t]

〈x, p〉. (12)

is an upper estimate for the value function V (t, x).

Since set Ẑ [t] is defined by a finite number of
linear inequalities, relation (12) is a problem of
linear programming.

If the value V̂ (t, x) is finite, then

V̂ (t, x) = 〈x, p(t, x)〉, p(t, x) ∈ Arg max
p∈Ẑ [t]

〈x, p〉.

If the maximizer p(t, x) is unique, then the esti-
mate V̂ is differentiable at (t, x) and V̂x(t, x) =
p(t, x) (Demyanov 1974).

The control may have a jump at position {t, x} if
the following condition holds:

∣

∣bT Vx

∣

∣ > 1 ⇐⇒
∣

∣bT p(t, x)
∣

∣ > 1.

The direction of the impulse
is û = − sign bT p(t, x). The jump amplitude α̂ is
determined as the maximum value of α > 0 such
that p(t, x) remains a maximizer after the jump,
i.e.

p(t, x) ∈ Arg max
p∈Ẑ [t]

〈x + αbû, p〉.

The value of α̂ may be calculated as follows. Let
ξ1, . . . , ξn be the active independent constraints in
the problem (12), (11), so that 〈ξi, p〉 = 1, i = 1, n.
Express vector x through basis {ξi}:

x =
n

∑

i=1

λiξi, λ = Ξ−1x, Ξ =
(

ξ1 · · · ξn

)

.

Since 〈x, p〉 =
∑n

i=1 λi〈ξi, p〉, we should have
λi > 0. Therefore

α̂ = max
{

α
∣

∣ Ξ−1(x + αbû) > 0
}

.

Denote µ = Ξ−1bû, then

α̂ = min
i=1,...,n

{

−λiµ
−1
i

∣

∣ µi < 0
}

.

Remark 13. Throughout the numerical simula-
tion of the controlled process, it is not necessary to
solve the linear programming problem (12) at each
step. Suppose the control had no impulse at time
τk and vector pk = p(τk, x(τk)) is known. Assume
also that 〈pk, B(τk)B(τk)ui〉 < 1, ∀i = 1, M , i.e.
the constraints corresponding to τk are inactive.
Then

p(τk+1, x(τk+1)) = XT (τk, τk+1)p(τk, x(τk)).
(13)

If the assumptions above do not hold, then the
right-hand side of (13) is usually a good initial
guess for finding p(τk+1, x(τk+1)).

6. THE ASYMPTOTIC SOLUTION

When the length of time interval [t0, t1] is large
(compared to oscillation periods of individual har-
monics), most solutions found numerically ex-
hibit a specific behavior. Namely, the impulses
occur when the harmonic with largest energy has
maximum velocity and zero displacement. In this
section, we study such effect by analyzing the
properties of solutions as the duration of the time
interval tends to infinity.

Here we consider the system in the form (6). The
backward reach set X̄1[t] here is

X̄1[t0] = conv
⋃

t∈[t0,t1]







































































b̄N+1uλ
−

1
2

1 sin
√

λ1∆t
...

b̄2Nuλ
−

1
2

N sin
√

λN∆t
b̄N+1u cos

√
λ1∆t

...
b̄2Nu cos

√
λN∆t







































































.

with ∆t = t0 − t and u taking values 1 and −1.
From here we see that points x̄ ∈ X̄1[t0] satisfy

λj x̄
2
j + x̄2

j+N 6 b̄2
N+j, j = 1, . . . , N,

i.e. X1[t0] ⊆
⋂N

j=1 Cj , where Cj are cylinders

Cj =

{

x̄

∣

∣

∣

∣

∣

λj x̄
2
j + x̄2

j+N

b̄2
N+j

6 1

}

.

Since the eigenvalues λi are distinct, the backward
reach sets in the limit fill the limiting intersection
of cylinders as t0 → −∞:

cl
⋃

t6t1

X1[t] = C =
N
⋂

j=1

Cj .

The corresponding value functions also converge:

lim
t→−∞

W (t, x) = V (x) = max
j=1,...,N

Vj(x), (14)

Vj(x) =

√

λj x̄2
j + x̄2

j+N

b̄2
N+j

.

The function V (x) is a lower estimate for the value
function.

In the limit, the HJB quasi-variational inequality
turns into

∣

∣b̄T Vx

∣

∣ 6 1, with necessary condition

for a jump being
∣

∣b̄T Vx

∣

∣ = 1.

If the maximum in (14) is attained at j = j0, then

∣

∣b̄T
Vx

∣

∣ =
x̄j0+N/b̄N+j0

V
6 1,

with equality attained when x̄j0 = 0. The ampli-
tude of the jump is then v(t, x̄) = −αb̄T Vx, with
maximum possible α chosen from condition

Vj0(ȳ) > max
j=1,...,N

Vj(ȳ) β ∈ [0, α), (15)



where ȳj = x̄j , ȳj+N = x̄j+N − βb̄N+j b̄
T Vx(t, x̄).

The latter gives

α = min
j 6=j0

V 2
j0

(x̄) − V 2
j (x̄)

2(b̄T Vx)
(

x̄N+j0

b̄N+j0

− x̄N+j

b̄N+j

) .

Note that after the first jump the set J0 will
contain at least two elements.

If the set of maximizers J0 in (14) has more than
one element, it is necessary to apply (15) for each
j0 ∈ J0 and choose the maximum α. However, in
this case the jump is possible only if x̄j0 = 0 for
all j0 ∈ J0, which is not true for any t > t0 in
general case. To overcome this, one may use an
ε-optimal strategy, namely, the jump takes place
when the condition

∣

∣b̄T Vx

∣

∣ > 1− ε is satisfied. By
integrating this, we get the following estimate:

VarU(·) 6
V (x̄0)

1 − ε
.

The set C may be approximated by an external
ellipsoid (Kurzhanski and Vályi 1997)

C ⊆ Cγ =







x̄

∣

∣

∣

∣

∣

∣

N
∑

j=1

γj

λj x̄
2
j + x̄2

j+N

b̄2
N+j

6 1







.

Here we assume that γj > 0, γ1+. . .+γN = 1. The
corresponding lower bound for the value function
is

Vγ(x̄) =





N
∑

j=1

γj

λj x̄
2
j + x̄2

j+N

b̄2
N+j





1
2

.

The condition of a jump for an ε-optimal strategy,
∣

∣b̄T Vγx

∣

∣ > 1 − ε, is

N
∑

j=1

γj

x̄N+j

b̄N+j

> (1 − ε)Vγ(x̄).

The condition (10) for the amplitude of the jump
α here turns to be the solution of a quadratic
equation.

7. CONCLUSION

This paper presents solutions to the problem of
feedback control for a high order oscillating sys-
tem which describes the motion of a chain of an
arbitrary finite number of suspended pendulums.
The problem is solved in the class of impulse
controls by applying Hamiltonian techniques. New
classes of HJB-type variational inequalities rele-
vant for this problem are introduced and solved
with respective impulse-type solution strategies
being specified. A numerical scheme for the so-
lutions is also indicated.
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Crandall, Michaël G. and Pierre-Louis Lions

(1983). Viscosity solutions of Hamilton–
Jacobi equations. Trans. Amer. Math. Soc.

277, 1–41.
Daryin, A. N., A. B. Kurzhanski and A. V. Se-

leznev (2005). A dynamic programming ap-
proach to the impulse control synthesis prob-
lem. In: Proc. Joint 44th IEEE CDC-ECC

2005. IEEE. Seville.
Demyanov, V. F. (1974). Minimax: Directional

Derivates. Nauka. Moscow. In Russian.
Dykhta, V. A. and O. N. Sumsonuk (2003). Opti-

mal impulsive control with applications. Fiz-
matlit. Moscow. In Russian.

Gusev, M. I. (1975). On optimal control of gener-
alized processes under non-convex state con-
straints. In: Differential Games and Control

Problems. UNC AN SSSR. Sverdlovsk.
Kalman, R. E. (1960). On the general theory of

control systems. In: Proc. 1st IFAC Congress.
Vol. 1. IFAC. Butterworths. London.

Krasovski, N. N. (1957). On a problem of optimal
regulation. Prikl. Math. & Mech. 21(5), 670–
677. In Russian.

Krasovski, N. N. (1968). The Theory of Motion

Control. Nauka. Moscow. In Russian.
Kurzhanski, A. B. (1975). Optimal systems

with impulse controls. In: Differential Games

and Control Problems. UNC AN SSSR.
Sverdlovsk.

Kurzhanski, A. B. and I. Vályi (1997). Ellipsoidal
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