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Abstract
The paper considers the investigation of a novel ro-

bust control algorithm of an electric generator with
unknown parameters under bounded disturbances and
high-frequency measurement noises. It is assumed that
only the load angle is available for measurement, but
not the rotor speed. The electric generator model is de-
scribed by a system of third-order nonlinear differential
equations with algebraic coupling ones. The proposed
algorithm consisting of static and dynamical terms is
based on the separation of the filtering and estimating
properties. Differently from existing results the pro-
posed scheme provides the opportunity to control inde-
pendently the quality of filtering and stabilization. In-
vestigations show that the proposed algorithm attenu-
ates parametric uncertainties and disturbances with ac-
curacy that can be reduced by tuning algorithm param-
eters.
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List of Symbols
In the paper the following notations are used:
∆δ(t) = δ(t)− δ0;
δ(t): the power angle of the generator;
δ0: the power angle of the generator at the operating
point;
∆ω(t) = ω(t)− ω0;
ω(t): the relative speed of the generator;
ω0: the synchronous machine speed;
∆Pe(t) = Pe(t)− Pm;
Pe(t): the active electrical power delivered by the gen-

erator;
Pm: the mechanical input power;
D: the per unit damping constant;
H: the per unit inertia constant;
E′

q(t): the transient EMF in the quadrature axis;
E′

d(t): the transient EMF in the direct axis;
E(t): the EMF in the quadrature axis;
Ef (t): the equivalent EMF in the excitation coil;
uf (t): the input of the SCR amplifier of the generator;
T ′
d0: the direct axis transient short circuit time constant;
kc: the gain of the excitation amplifier;
Vt(t): the generator terminal voltage;
Id(t): the direct axis current;
Iq(t): the quadrature axis current;
Qe(t): the reactive power;
Vs: the infinite bus voltage;
xds = xT + 0, 5xL + xd;
xqs = xT + 0, 5xL + xq;
x′ds = xT + 0, 5xL + x′d;
xT : the reactance of the transformer;
xL: the reactance of one transmission line;
xd: the direct axis reactance;
xq: the quadrature axis reactance;
x′d: the direct axis transient reactance;
p = d/dt: the differential operator.

1 Introduction
Since the demand for electricity is increasing continu-

ously, the present trends of power system engineers are
to operate the power systems closer to their stability
limits without sacrificing the reliability. The stability
of power system is very important for secure system
operation because an unsecured system can undergo
non-periodic major cascading disturbances, or black-
outs, which have serious consequences. The world
power grids are experiencing many blackouts in re-
cent years due to a variety of effects, such as light-
ing, severe storms, equipment failures, etc. Thus im-
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portant parameters, such as effective reactances xL of
transmission lines, in an electric power system, espe-
cially in a multi-machine network, always have some
uncertainties. To overcome the parametric uncertain-
ties, several control schemes have been proposed. For
example, robust adaptive backstepping control [Roy,
Mahmud, Shen, and Oo, 2015], sliding mode control
[Loukianov, Canedo, Fridman, and Soto-Cota, 2011;
Munoz-Aguilar, Doria-Cerezo, Fossas, and Cardoner,
2011], passivity-based approach [Furtat et al., 2016;
Galaz, Ortega, Bazanella, and Stankovic, 2003; Luo,
2007], model predictive control [Zheng, Zhou, Zhu,
Zhang, Li, and Fu, 2016], and feedback lineariza-
tion approach [Kenne, Goma, Nkwawo, Lagarrigue,
Arzande, and Vannier, 2010; Mahmud, Pota and Hos-
sain, 2012].
A robust adaptive backstepping scheme is proposed in

[Roy, Mahmud, Shen, and Oo, 2015] to design an exci-
tation controller for the electric generator, which con-
siders both parametric uncertainties and external dis-
turbances along with measurement noises. The perfor-
mance of the controller degrades if adaptation gains are
not selected properly.
In [Loukianov, Canedo, Fridman, and Soto-Cota,

2011; Munoz-Aguilar, Doria-Cerezo, Fossas, and Car-
doner, 2011], sliding mode excitation controllers are
used to provide robustness against parametric uncer-
tainties and external disturbances. However, the main
limitation of the sliding mode excitation controller is
the selection of the sliding surface during the fast tran-
sients which are very common in power system opera-
tions.
Works [Furtat et al., 2016; Galaz, Ortega, Bazanella,

and Stankovic, 2003; Luo, 2007] have used the total en-
ergy of the system to design the excitation controller for
the electric generator. However, it is practically hard
and sometime, quite infeasible to calculate the accurate
energy of the electric generator, which makes this ap-
proach not so popular in power system applications.
Nonlinear model predictive control scheme allows di-

rect design of excitation control for the electric gen-
erator while optimizing a nonlinear objective function
[Zheng, Zhou, Zhu, Zhang, Li, and Fu, 2016]. This
approach is useful for the electric generator application
as the objective function is quite simple and straight-
forward. However, the implementation of the model
predictive control scheme requires the exact paramet-
ric information of the system in order to achieve the
desired control objective and the control performance
may degrade if the parameters are uncertain.
The direct feedback linearization scheme is proposed

in [Kenne, Goma, Nkwawo, Lagarrigue, Arzande, and
Vannier, 2010] which considers only the parametric un-
certainties of the electric generator. The linear con-
troller for the feedback linearized system designed is
a linear quadratic regulator (LQR). It uses the rotor an-
gle of the generator as a state for its state feedback.

A robust partial feedback linearizing controller is pro-
posed in [Mahmud, Pota and Hossain, 2012] where
both state dependent and parametric uncertainties are
modeled as a structured uncertainty that is explicitly
used in LQR design. It uses the speed deviation signal
as the output function. As the designed LQR controller
depends on the pre-estimated structured uncertainty, its
performance may degrade if the parameter changes are
large. Therefore, the existing feedback linearization
plus LQR approach does not have the capability to en-
sure the robustness of the closed-loop system against
the variations in the system parameters, external distur-
bances, and measurement noises.
The review has shown that despite the large amount of

results on power system control, the issue of robustness
of the excitation controllers to the model uncertainties,
external disturbances and measurement noises has not
been fully studied and resolved. There is still a pressing
need to develop practically useful excitation controllers
with good performance and robustness to resolve this
important issue.
To provide a solution to the open problem, this pa-

per will develop and investigate a robust controller us-
ing artificial delay [Nekhoroshikh and Furtat, 2017]
for the excitation control of the electric generator. It
is assumed that only the noisy load angle is available
for measurement, but not the rotor speed. The pro-
posed control signal consists of statical and dynamical
terms. The former compensates static mechanical in-
put power. The latter deals with parametric uncertain-
ties and disturbances. Firstly, low-pass filter is used to
filter out the high-frequency components of the noise
before feeding the measurement into the observer. Sec-
ondly, delayed stabilizing output-feedback is designed
using filtered values of the load angle. The proposed
control scheme provides the robustness against para-
metric uncertainties, disturbances, and high-frequency
measurement noises. Furthermore, the stability region
of the generator could be obtained during control pa-
rameter tuning.

2 Plant Model and Problem Statement
In this paper an infinite bus model is considered. Thus,

the simplified model can be described as a single gen-
erator connected through two parallel transmission line
to a large network approximated by an infinite bus. Ac-
cording to [Anderson and Fouad, 1977; Bergan, 1986],
the electrical generator model connected to infinite bus
is described by the following equations
– mechanical equations:

∆δ̇(t) = ∆ω(t) (1)

∆ω̇(t) = − D

2H
∆ω(t)− ω0

2H
∆Pe(t) (2)
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– generator electrical dynamics:

Ė′
q(t) =

1

T ′
d0

[Ef (t)− E(t)] (3)

Ef (t) = kcuf (t) (4)

– electrical equations:

E(t) =
xds
x′ds

E′
q(t)−

xd − x′d
x′ds

Vs cos δ(t) (5)

E′
d(t) = (xq − x′d)Iq(t) (6)

Vt(t) =
√
(E(t)− xdId(t))2 + (xqIq(t))2 (7)

Id(t) =
E(t)

xds
− Vs
xds

cos δ(t) (8)

Iq(t) =
Vs
xqs

sin δ(t) (9)

Pe(t) =
Vs
xds

E(t) sin δ(t)

+
V 2
s

2

(
1

xqs
− 1

xds

)
sin(2δ(t)) (10)

Qe(t) =
Vs
xds

E(t) cos δ(t)− V 2
s

2

(
1

xqs
+

1

xds

)
+
V 2
s

2

(
1

xqs
− 1

xds

)
cos(2δ(t)) (11)

We study model (1)-(11) under the following two as-
sumptions.

1. Parameters D, H , T ′
d0, kc, xT , xL, xd, xq and x′d

belong to a known compact set Ξ.
2. Only noisy load angle

z(t) = δ(t) + w(t) (12)

is available for measurement, wherew(t) is a high-
frequency measurement noise.

The proposed control law should ensure the stabiliza-
tion of the electric generator at the operating point, i.e.

lim
t→∞

sup |∆δ(t)| ≤ ϵ, (13)

where ϵ > 0 is a required accuracy.

3 Robust Controller Design and Investigation
From the section above one can conclude that model

of electric generator is essentially nonlinear. To design
a linear controller, we can treat all nonlinearities as in-
ternal disturbances. To this end, let us rewrite model
(1)-(11) as follows

Q(p, t)∆δ(t) = −k sin δ(t)uf (t) + φ(t), (14)

where

Q(p, t) = p3 + q2p
2 + q1(t)p;

q2 =
D

2H
+

xds
x′dsT

′
d0

;

q1(t) =
Dxds

2Hx′dsT
′
d0

+
ω0Vs
2Hx′ds

E′
q(t) cos δ(t)

+
ω0V

2
s

2H

(
1

xqs
− 1

x′ds

)
cos(2δ(t));

k =
ω0Vskc

2Hx′dsT
′
d0

;

φ(t) =
ω0xds

2Hx′dsT
′
d0

Pm

− ω0xdsV
2
s

4Hx′dsT
′
d0

(
1

xqs
− 1

xds

)
sin(2δ(t)).

Since output measurements contain high-frequency
noise the signal z(t) − δ0 is passed through a single-
input single-output low-pass filter of the form

∆δ̂(t) =
1

r∏
i=1

(µσip+ 1)
[z(t)− δ0], (15)

where ∆δ̂(t) is the estimate of ∆δ(t), µ << 1;
σ0, . . . , σr > 0 are time constants; r is the dynamical
order of the filter.
It is worthwhile to mention that the effect of preced-

ing a high-gain observer by a low-pass filter has been
analysed in [Khalil and Priess, 2016].
It is a well-known fact that an electric generator can

not be stabilized with zero voltage applied to the exci-
tation coil uf (t) and non-zero mechanical input power
Pm. Thus, signal uf (t) has to consist of statical and
dynamical terms. The former compensates static me-
chanical input power. The latter deals with parametric
uncertainties and disturbances. So let us define control
law in the following form

uf (t) =
E0

kc
+ α sgn

[
sin δ̂(t)

] 2∑
j=0

dj∆δ̄
(j)(t), (16)

where E0 is the EMF in the quadrature axis at the
operating point; α > 0 is the adjustable parameter;
d0, d1, d2 are coefficients chosen such that the polyno-
mial D(λ) = d2λ

2 + d1λ + d0 is Hurwitz; δ̂(t) =

∆δ̂(t) + δ0 is the estimate of power angle; ∆δ̄(i)(t) is
the estimate of the ith derivative of ∆δ̂(t).
According to assumption 2, the derivatives of the out-

put can not be measured directly. Therefore, one can
use the finite differences to estimate the derivatives and
consequently to implement the control law (16). So the
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following observer is introduced

∆δ̄(t) = ∆δ̂(t),

∆δ̄(1)(t) =
∆δ̄(t)−∆δ̄(t− h)

h
,

∆δ̄(2)(t) =
∆δ̄(1)(t)−∆δ̄(1)(t− h)

h
,

(17)

where h > 0 is the artificial delay.
Substituting (17) in (16), it yields:

uf (t) =
E0

kc
+ α sgn

[
sin δ̂(t)

] 2∑
j=0

d̄j∆δ(t− jh).

(18)

where

d̄0 =
d2 + d1h+ d0h

2

h2
;

d̄1 = −2d2 + d1h

h2
; d̄2 =

d2
h2
.

Since all signals in (15) and (18) are measurable so
the control law is simple and practically realizable.
Let us formulate the main result.

Theorem 1. Let assumptions be hold and noise w(t)
be bounded. Then there exist coefficients α > 0, µ > 0,
h > 0 and numbers 0 ≤ δmin ≤ δmax ≤ π such that
algorithm consisting of filter (15) and control law (18)
ensures existence of stability region [δmin, δmax].

Proof. Taking into account (16), we investigate the fol-
lowing closed-loop system{

Q(p, t)∆δ(t) = −αk̃(t)g(t) + φ̃(t),

R(p)∆δ̂(t) = ∆δ(t) + w(t),
(19)

where k̃(t) = k sgn
[
sin δ̂(t)

]
sin δ(t);

g(t) =
∑2

j=0 d̄j∆δ(t− jh);
φ̃(t) = φ(t)− (kE0/kc) sin δ(t);
R(p) =

∏r
i=1 (µσip+ 1).

Introducing filtering error e = ∆δ−∆δ̂, function g(t)
can be represented as follows:

g(t) = d̄0 [∆δ(t)− e(t)]

+ d̄1 [∆δ(t− h)− e(t− h)]

+ d̄2 [∆δ(t− 2h)− e(t− 2h)] .

(20)

We consider a case when the dimension of filter (15)
equals one. It follows from (15) that

∆δ̂(1)(t) = − 1

µσ1
∆δ̂(t) +

1

µσ1
[∆δ(t) + w(t)] (21)

or

e(1)(t) = ∆δ(1)(t)− 1

µσ1
[e(t) + w(t)] . (22)

Therefore, closed-loop system (19) could be rewritten
as follows in the form

ε̇(t) = A(t)ε(t) + F1(t)ε(t− h)

+ F2(t)ε(t− 2h) + ψ(t),

∆δ(t) = Lε(t),

(23)

where

ε(t) =


∆δ(t)

∆δ(1)(t)
∆δ(2)(t)
e(t)

 ; L =
[
1 0 0 0

]
;

A(t) =


0 1 0 0
0 0 1 0

−αk̃(t)d̄0 −q1(t) −q2 αk̃(t)d̄0
0 1 0 − 1

µσ1

 ;

Fj(t) = −αk̃(t)


0 0 0 0
0 0 0 0
d̄j 0 0 −d̄j
0 0 0 0

 , j = 1, 2;

ψ(t) =


0
0
0

− 1
µσ1

w(t) +

0
0
1
0

 φ̃(t).
To stability analysis of (23), we consider Lyapunov-

Krasovskii functional in the form

V = εT (t)Pε(t) +

0∫
−h

εT (t+ s)N1ε(t+ s)ds

+

0∫
−2h

εT (t+ s)N2ε(t+ s)ds,

(24)

where P = PT is a solution of LMI AT (t)P +
PA(t) ≤ −Q, Q = QT > 0, Nj = NT

j > 0, j = 1, 2.

Remark 1. We note that the matrix A(t) depends on
functions sin δ(t), cos δ(t) andE′

q(t) that are bounded.
Therefore, one have to solve this LMI simultaneously
for all δ(t) in stability region of the generator, i.e. 0 ≤
δmin ≤ δ(t) ≤ δmax ≤ π, applying the same decision
matrix P .
Obviously, there exists a solution for δ = π/2. Then

LMI could be feasible in vicinity of δ = π/2 also.
Therefore, changing value of δ the stability region
[δmin, δmax] of generator can be found.
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Taking derivative of (24) w.r.t. t, we get

V̇ ≤ −εT (t) [Q−N1 −N2] ε(t)

−
2∑

j=1

εT (t− jh)Njε(t− jh)

+ 2εT (t)
2∑

j=1

Fjε(t− jh) + 2εT (t)Pψ(t).

(25)

We estimate terms in (25) as follows

2εT (t)Fj(t)ε(t− jh) ≤ χεT (t)P 2ε(t)

+ χ−1εT (t− jh)FT
j (t)Fj(t)ε(t− jh);

2εT (t)Pψ(t) ≤ χεT (t)P 2ε(t) + χ−1|ψ(t)|2,
(26)

where χ > 0 is a small parameter, j = 1, 2.
Taking into account (26), we rewrite (25) as follows

V̇ ≤ −εT (t)Wε(t)− εT (t− h)R1ε(t− h)

− εT (t− 2h)R2ε(t− 2h) + τ,
(27)

where W = Q − N1 − N2 − 3χP 2, Rj ≥ Nj −
χ−1FT

j (t)Fj(t), j = 1, 2, τ = supt≥0 χ
−1|ψ(t)|2.

Obviously, there exist parameters α and χ such that
W > 0, R1 > 0 and R2 > 0. Thus, inequality (27)
can be estimated in the form

V̇ ≤ −λmin(W )εT (t)ε(t) + τ, (28)

where λmin(W ) is the smallest eigenvalue of W . As a
result, goal (13) holds.
Other cases depending on the dimension of filter (15)

could be proved in the similar manner.

4 Conclusion
The paper investigates the robust control problem of

an electric generator with unknown parameters under
the effect of bounded disturbances and the presence of
high-frequency measurement noises. It is assumed that
only the load angle is available for measurement. It
is a well-known fact that an electric generator can not
be stabilized with zero voltage applied to the excitation
coil and non-zero mechanical input power. Thus, the
proposed control signal consists of statical and dynam-
ical terms. The former compensates static mechanical
input power. The latter deals with parametric uncer-
tainties and disturbances.
It is shown that the electric generator is stabilized

when coefficient µ and artificial time delay h are suffi-
ciently small. Unlike the existing results the proposed
algorithm allows to increase the required accuracy due

to the separation principle of filtering and estimating
properties. The control scheme consisting of low-pass
filter and delayed stabilizing delayed output feedback
is easy in implementation. Furthermore, the stability
region of the generator could be obtained during con-
trol parameter tuning.
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