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Abstract

We propose a hybrid controller for a class of 2-
DOF underactuated mechanical systems with dis-
continuous friction in the unactuated joint. The
control objective is the regulation of both unac-
tuated and actuated variables. The design of the
control law is divided in two parts. First we design
a discontinuous control for the unactuated joint,
then we propose another discontinuous control for
the actuated joint. The proposed controller guar-
antees the convergence of the position error to zero,
and it is robust with respect to some uncertainty
in the discontinuous friction coefficients. We illus-
trate the technique with its application to a phys-
ical system.
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1 Introduction

Control synthesis for underactuated systems is
more complex than it is for systems with full
control [Seto and Baillieul, 1994]. A few repre-
sentative papers analyzing some problems about
underactuated systems include the study of ac-
cessibility [Reyhanoglu, van der Shaft, McClam-
roch and Kolmanovsky, 1999], stabilization of
equilibria through passivity techniques [Ortega,
Spong, Gomez-Estern, 2002] and energy shaping
[Bloch, Leonard and Marsden, 2000], stabilization
and tracking via backstepping control [Seto and
Baillieul, 1994], the use of virtual constraints to
produce stable oscillations [Shiriaev, Perram and
Canudas-de-Wit, 2005], path planning [Bullo and
Lynch, 2001], and control of mechanical systems
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with an unactuated cyclic variable [Grizzle, Moog
and Chevallereau, 2005], among others.

Most papers in the field of underactuated mechan-
ical control have commonly neglected a fundamen-
tal issue in modeling and control, as it is the fric-
tion effect. Friction terms have been repeatedly left
unmatched, and the classical approach reduces to
solve the control problem for an undamped, open-
loop model. Thus, in recent years several papers
have addressed the problem of friction in the un-
deractuated mechanical systems.

In [Woolsey, Bloch, Leonard and Marsden, 2001;
Woolsey, Bloch, Leonard, Reddy, Chang and Mars-
den, 2004], the effect of linear damping (viscous
friction) on the stability of equilibria which have
been stabilized previously in the absence of damp-
ing, with the method of controlled Lagrangians,
is described. The Interconnection and Damping
Assignment Passivity-Based Control (IDA-PBC)
technique for underactuated mechanical systems
was extended to incorporate open-loop damping in
[Gomez-Estern and van der Schaft, 2004]. Here, in
addition, the conditions for recovering stability via
damping injection in the presence of highly uncer-
tain, smooth approximations of Coulomb friction
effects, are presented.

For underactuated mechanical systems with dis-
continuous friction only in the actuated joints, the
problem of compensation, in some cases, can be
solved [Riachy, Floquet, Orlov and Richard, 2006].
However, the design of control algorithms for un-
deractuated mechanical systems with discontinu-
ous friction in the unactuated joints, without ne-
glecting or approximating the discontinuous terms,
to the best of our knowledge, is still open.

In this paper we propose a hybrid controller for
a class of 2-DOF underactuated mechanical sys-
tems with discontinuous friction in the unactuated
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joint. The pendulum with inertial disk and the in-
verted pendulum are included in this class of sys-
tems. The control objective is the regulation of
both unactuated and actuated joints. The control
design is divided in two parts; first, the former joint
is steered to the desired position in finite time, then
the actuated joint is also driven to the desired po-
sition. We make use of a central result presented
in [Orlov, 2005], about the conditions to have fi-
nite time stability of a class of uncertain switched
systems. The proposed controller guarantees the
convergence of the position error to zero, and it is
robust with respect to some uncertainty in the dis-
continuous friction coefficients. We illustrate this
procedure with the application to a physical sys-
tem.

2 Problem Statement
Consider a 2-DOF underactuated mechanical sys-
tem. Its state-space representation is given by
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Jq
I3Gy + IyGo = u. (1)

Hereinafter, ¢1 € R, ¢ € R, I, Is, I3 and Iy
are positive constants and I; > %1; aval—(fl) is a
gravitational torque and it is a smooth %unction
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=
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and wu is a control input. Throughout, we assume
a relatively strong friction level in the unactuated
joint link whereas friction forces, enforced the ac-
tuated link, are assumed to be negligible. Fol-
lowing frequently used static friction models (see,
e.g., [Bartolini and Punta, 2000; Olsson, Astrom,
Canudas de Wit, Gafvert, and Lischinsky, 1998]),
the modulus of the friction term C (¢y) is governed
by

Cl=c.+C-clew(-L). @

S

where C, and Cy are the Coulomb friction level and
the level of stiction, with 0 < C. < (4, and vy is
the Stribeck velocity. Note that C. < C(¢1) < Cs.

The control objective is to steer to zero q1, ¢1, ¢2
and ¢o. Since the system in question is underactu-
ated the hybrid control synthesis is invoked. Due
to the presence of the friction, our hybrid controller
is composed of discontinuous control laws which

are capable of rejecting friction influence on the
system.

If we define z1 = ¢, x2 = %1, x3 = q1 + %qg,
x4 = 23 and

22

v = [(CS —C.)exp (—3—;) —(C, — ca] o (@)
(4)

then the system (1) is described by

:tl = T2,

1 Vi (x1)

T LI ( oz, TG (2)
I

b + —2u> , (5)
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T3 = T4,

by = = (6)

T4 = I3U.

Note that || < Cs — C. < Cs. The con-
trol aim is that of steering to zero the state
T = (xl,xg,xg,x4)T with a hybrid control u =
u(xy, T2, T3, 24).

We proceed as follows. Let us consider a hybrid
control law u of the form

_ Ul(l'l,xg) if iC%"‘.’E%?éO
u_{uQ(x3,x4) if x1 =29 = 0. (7)

First we will design a discontinuous controller u;
for subsystem (5) ensuring the convergence of x;
and x5 to zero in finite time. Then we propose a
discontinuous controller uy for subsystem (6) steer-
ing x3 and x4 to zero.

To this end we note that the meaning of the result-
ing differential equation (4)—(7) with the discontin-
uous right-hand side is viewed in the Filippov sense
[Filippov, 1988].

3 Main Result

We recall first a result presented in [Orlov, 2005].
Consider the uncertain second order switched sys-
tem

Y1 = Yo,
Y2 = —asign(y1) — bsign(ya2) — hyr — py2
‘HU(yh Y2, t)v (8)

where a and b are constants, h and p are para-
meters of the linear gain, w(yi,ys,t) is a piece-

wise continuous nonlinear perturbation, uniformly
bounded

lw(y1,y2, )| < M 9)



for all continuity points (y1,y2,t) and some M > 0,
and

. 1 2>0
sign(z) = {_1 2 <0 " (10)

Here, solutions of this system are defined in the
Filippov sense [Filippov, 1988].

Theorem 1. [Orlov, 2005] Let conditions

O<M<b<a—M,
h>0, p>0 (11)

be satisfied. Then the uncertain switched system
(8) with (9) is globally equiuniformly finite time
stable around the origin.

We use this result to solve the problem described
in the previous section. First we propose the dis-
continuous controller

I .
Ul(l‘lax2) = I—;lk1s1gn(x1), (12)

for subsystem (5)where k; is a constant. A lower
bound on values k; forcing x; and xs converge to
zero is established in the next Theorem.

Theorem 2. The subsystem (5) with « = wu;, where
w1 is given by (12), is globally equiuniformly finite
time stable around x; = x9 = 0 if

Wal—(xl) for all z;. (13)

]{31>QCSCC+'
£

Proof. To begin with, note that z; = x5 = 0 is the
only equilibrium point of the subsystem (5) subject

o (12),(13). Indeed, if 22 = 0 on a trajectory of
this subsystem, then due to (13), the second equa-
tion of (5) with (12) fails to hold for any z; # 0.
This particularly means that the subsystem trajec-
tories cross the axes ©1 = 0 and x5 = 0 everywhere
but the origin.

Thus, it is sufficient to analyze the behavior
of the trajectories beyond the discontinuity sur-

faces S = {(xl,xg)T eR?:x; = 0} and Sy =

(SL'1,.’E2)T eR?: a9 = 0}. With this in mind, let

us consider the function

I
V2 (CEl,.’EQ) V1(£C1>+]€1 |£C1|+ (Il—%> CE%,
(14)

where k; is given by (13), which is Lipschitz con-
tinuous, radially unbounded, and positive definite.

The time-derivative of V5 along the trajectories of
(5) with (12) and (13) outside the discontinuity
surfaces S; and S, satisfies

‘6(1’171‘2) <-C, |l’2| < 0. (15)

By applying the extended version of the invariance
principle, made in [Alvarez, Orlov and Acho, 2000],
to the discontinuous right-hand side subsystem (5)
subject to (12),(13), we conclude that all the sub-
system trajectories converge to (x1,x2) = (0,0).
Thus, initialized in an arbitrarily small vicinity

D, = {(xl,xQ)T € R?: Va(z1,20) < e}, (16)

where € > 0, of 1 = zo = 0, the subsystem (5)
with (12) and (13) cannot leave this vicinity. More-

over, due to (13), k1 > ‘dvl(xl) + Cs + || and in

finite time t1, Cs > C,. > ‘avalT(gfl) +|v|. Therefore,

k1

ifylleayQZana:[1,[2[3/14 :[1 233/14

= (252 4 0) for
t > t1, according to Theorem 1, the subsystem (5)
under conditions (12) and (13) is globally equiuni-
formly finite time stable and x1(t) = z2(t) = 0 at
the settling time t = T'(29,29), dependent on the
initial conditions z1(0) = 29, 22(0) = 9.

h=p=0,and w =

Now we propose the discontinuous control law

uz (3, w4) = —kosign(zs) — kssign(zs),  (17)

for subsystem (6) where k3 > 0 and k3 > 0 are
constants.

In order to avoid escaping subsystem (5) from the
origin after the settling time instant T'(z9, 29), the
action of controller (7) on the subsystem should not
exceed the Coulomb friction level, i.e., the values
ko and ks are to be such that

I
ko + k3 < CC—4 (18)
I

To reproduce this conclusion it suffices to compute
the time derivative of the function Va(z1,x2), gov-
erned by (14), and to make sure that

. I
Va(w1,02) < —[Ce — I—i(kz +k3)]|z2| <0 (19)

on the solutions of subsystem (5), driven by con-
troller (17).

Moreover, by applying Theorem 1 to the closed-
loop subsystem (6), (17), the latter proves to be



finite time stable provided that
0< k3 < ]412. (20)

Summarizing, we arrive at the following.

Theorem 3. Let system (5), (6) be driven by the
hybrid controller (7) composed of (12), (17) and
let the controller parameters meet conditions (13),
(18) and (20). Then the closed-loop system is finite
time stable.

It is worth noticing that due to construction (cf.
Theorem 1) the proposed controller is robust with
respect to friction discrepancies. In the remainder,
our development is supported by an application to
a physical system.

4  Application

Let us consider the system shown in figure 1,
whose motion is constrained to be in a horizon-
tal plane. The first joint pivots around a point O,
and a driver deplaces the second joint. This system
is modelled by the equations

Jolr + maloGa + 2magadady + C (¢1) o (¢1) = 0,
mglo(h + m2d2 - m2Q2(ﬁ =u,
(21)

where ¢; is the pendulum angle, g5 is the position
of mass 2, m; and my are the masses, J, = J; +
Jo +ma (12 + ¢3) +mal? is the system moment of
inertia about O, J; and Jo are moments of inertia,
a(-) and C(-) are given by (2) and (3), I. and I,
are positives constants, and wu is the control input.

Figure 1. Horizontal Pendulum

The objective is to design a hybrid control law
which steers to zero q1, ¢1, 2 and ¢o.

In order to apply the previous result we must sim-
plify this model, assuming ¢, ¢1, g2 and ¢o are

small. Under this condition, system (21) can be
simplified to

JoeG1 + m210d2 +C ((JI) « ((JI) =0,
MaloGy +made = u,  (22)

with Joe = J1 + Jo + mal2 + my 2.
For this system we have Iy = Joe, [o = I3 =

LI :
malo, Iy = ma, Iy > F2, 01 = qu, 2 = 1, ¥3 =

q1+%q2’ T4 = q‘1+%q'2, and, according to (7) with
(12), (17), we propose

1 .
up = l—k1s1gn (q1)
o

. 1 . ) 1.
ug = —kosign <q1 + l—qg) — k3sign (q1 + l—q2> ,
(23)

where, according to (13), (18) and (20), k1 > 2C,—
CC, C.> 1, (kQ +k3), and ko > k3 > 0.

Figures 2 show an experimental result conducted
on the system manufactured by ECP, model 505.
We have set [, = 0.330 m, m; = 0.785 kg,
mo = 0.213 kg, Joe = 0.0477957 kg - m?, Cs =~
C. =~ 0.0004 N - m, k1 = 0.0008, k; = 0.0005, and
k3 = 00004, with q1 (to) = —0.045 rad, ql (t()) =0
rad/s, gz (tp) = 0 m, and ¢z (tg) = 0 m/s. The
control law is applied in ¢ = 2.5 sec.

q

(rad) 0:
q2 0.06 - | | | —
(m h

x10°

—~
=
[
> ©® o w o
T T ©

o
~
ab
e
®

t (sec)1

Figure 2. Positions and control of a Horizontal Pendulum.

The proposed control was designed assuming ¢,
¢1, q2 and ¢o are small. However, we can take
advantage of the finite time convergence if we wish
steer to an arbitrary position the unactuated joint.
Experimental result is shown in Figures 3, where
now we have set ¢ (to) = 0 rad, ¢1 (to) = 0 rad/s,
g2 (to) = 0 m, g2 (tp) = 0 m/s, and the output of
a 2nd order filter to a step with a magnitude of
0.31416 rad as reference of ¢q;. The step is applied
in ¢ = 1.5 sec.
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Figure 3. Positions and control of a Horizontal Pendulum.

5 Conclusions

In this paper we have proposed a hybrid controller
for a class of 2-DOF underactuated mechanical sys-
tems with discontinuous friction in the unactuated
joint. The control objective is the regulation of
both the unactuated and actuated joints. The pro-
posed controller guarantees the convergence of the
position error to zero in finite time, and it is ro-
bust with respect to some uncertainty in the dis-
continuous friction coefficients. We illustrated the
technique with its application to a physical under-
actuated system: a horizontal pendulum. Here, in
order to apply the main result we must simplify
this model, assuming q1, ¢1, g2 and ¢o are small;
however, since the closed loop system converges to
the desired position in a finite time, it is possible
to drive it to an arbitrary position in a long enough
time.
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