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Abstract

We address the problem of output feedback
synchronization of certain chaotic systems, un-
der parameter uncertainty. That is, given a mas-
ter system, the objective is to design a slave
system that copies the dynamics of the master
and reconstructs both the state and the values
of the constant parameters of the master sys-
tem. Hence, the synchronization problem that
we address enters in the framework of Pecora
and Carroll and relies on adaptive observer the-
ory. In particular, the conditions that we impose
take the form of persistency of excitation.

1 Introduction

Since the celebrated paper [?] master-slave
synchronization of chaotic systems has gained an
increasing interest, specifically but not only, due
to the applications of this problem into secured

communication; see for instance [?, ?, ?] to cite
a few. Using chaotic systems to transmit and re-
ceive information has several advantages as op-
posed to more conventional methods relying on
periodic carrier signals: 1) chaotic modulation
offers a better performance since the correlation
of waves is lower than in the case of conventional
periodic carriers; 2) it may out-perform conven-
tional methods in the case of noisy channels; 3)
chaotic modulation presents robust wide-band
communications; etc.

In the classic master-slave or, transmitter-
receiver scheme, a master circuit is tunned to
transmit information using a chaotic carrier sig-
nal. The signal is received by a “slave” circuit
which, if it can be constructed identically to the
master, the information may be decoded out of
the chaotic carrier. In practice, it is impossi-
ble to repeat the master circuit with the exact
values of its components even when these values
are known. To this, we add the fact that the
information is transmitted through a non-ideal
channel. All this uncertainty stymies consider-
ably the faculty of reconstructing the useful in-
formation.

In this paper, we present an adaptive approach
to synchronization which relies on adaptive ob-
server design. As it has been shown in the im-
portant paper [?] the synchronization problem
may be recasted in a problem of observer-design,
well known in the literature of control systems
theory. Different observer-based synchronization
schemes have been proposed in the literature,
e.g. relying on sliding modes: [?]; high-gain:
[?]; Luenberger-based observers: [?], etc. We
propose an adaptive observer for a class of sys-
tems that covers certain chaotic systems. Then,
we give sufficient conditions to achieve master-
slave synchronization in the event of parameter
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uncertainty and assuming that only an output –
possibly part of the master’s state – is available
for measurement.

The rest of the paper is organized as follows.
In coming section we introduce some notation
and definitions of stability that set the frame-
work for our main results. In Section 3 we
present an adaptive observer for a class of de-
tectable systems and give examples of chaotic
systems that fit in our framework. In Section
5 we present the proofs of our findings, before
concluding with some remarks.

2 Preliminaries

Notation. We say that a function φ : R≥0 ×
Rn → A with A a closed, not necessarily com-
pact set, satisfies the basic regularity assumption
(BRA) if φ(t, ·) is locally Lipschitz uniformly in
t and φ(·, x) is measurable. We denote the usual
Euclidean norm of vectors by |·| and use the same
symbol for the matrix induced norm. A function
α : R≥0 → R≥0 is said to be of class K (α ∈ K),
if it is continuous, strictly increasing and zero at
zero; α ∈ K∞ if, in addition, it is unbounded.
A function β : R≥0 × R≥0 → R≥0 is of class KL
if β(·, t) ∈ K , β(s, ·) is strictly decreasing and
limt→∞ β(s, t) = 0. We denote the solution of a
differential equation ẋ = f(t, x) starting at x◦ at
time t◦ by x(·, t◦, x◦); furthermore, if the latter
are defined for all t ≥ t◦ we say that the system
is forward complete.

[Uniform global stability] The origin of

ẋ = f(t, x) (1)

where f(·, ·) satisfies the BRA, is said to be
uniformly globally stable (UGS) if there exists
κ ∈ K∞ such that, for each (t◦, x◦) ∈ R≥0 × Rn,

each solution x(·, t◦, x◦) of (1) satisfies

|x(t, t◦, x◦)| ≤ κ(|x◦|) ∀ t ≥ t◦ . (2)

[Uniform global asymptotic stability] The origin
of (1) is said to be uniformly globally asymptot-
ically stable (UGAS) if it is UGS and uniformly
globally attractive, i.e., for each pair of strictly
positive real numbers (r, σ), there exists T > 0
such that for each solution

|x◦| ≤ r =⇒ |x(t, t◦, x◦)| ≤ σ ∀ t ≥ t◦ + T .
[UES] The origin of the system ẋ = f(t, x) is

said to be uniformly exponentially stable on any
ball if for any r > 0 there exist two constants k
and γ > 0 such that, for all t ≥ t◦ ≥ 0 and all
x◦ ∈ Rn such that |x◦| < r

|x(t, t◦, x◦)| ≤ k |x◦| e−γ(t−t◦) . (3)

[Uniform Semiglobal Practical Asymptotic Sta-
bility] The origin of (1) is said to be uni-
formly semiglobally practically asymptotically
stable (USPAS) if for each positive real numbers
∆ > δ > 0 and σ > 0 there exist T > 0 and
κ ∈ K∞ such that |x(t, t◦, x◦)| ≤ κ(|x◦|) for all
t ≥ t◦ ≥ 0 and

|x◦| ≤ ∆ =⇒ |x(t, t◦, x◦)| ≤ σ+δ ∀ t ≥ t◦+T .

3 Adaptive Observers With
Persistency of Excitation

Consider a nonlinear system of the form

ẋ = A(y)x+ Ψ(x)θ +B(t, x) (4)

where x ∈ Rn is the state vector; θ ∈ Θ is a
vector of unknown constant parameters and Θ
is a compact of Rm; y = Cx is a measurable
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output; the pair (A(y(t)), C) is detectable, that
is y(t) ≡ 0 implies that x(t) → 0; the functions
Ψ and B are globally Lipschitz, i.e. there exist
ψM and bM such that, for any vectors ζ ∈ Rm,
with |ζ| = 1, x1, x2 ∈ Rn and all t ≥ 0,

|Ψ(x1)ζ −Ψ(x2)ζ| ≤ ψM |x1 − x2| (5a)
|B(t, x1)−B(t, x2)| ≤ bM |x1 − x2| . (5b)

Moreover, there exists ψ0 ≥ 0 such that

max
|ζ| = 1

∣∣∣ζ>Ψ(0)ζ
∣∣∣ ≤ ψ0 . (6)

Under these conditions we propose for systems
of the form (4), the adaptive observer

˙̂x = A(y)x̂− L(t, y)C(x− x̂) +B(t, x̂) + Ψ(x̂)θ̂
(7)

where L(·, ·) satisfies the basic regularity as-
sumption. Using (4), and defining x̄ := x̂ − x,
θ̄ := θ̂−θ the estimation error dynamics is given
by

˙̄x = [A(y)− L(t, y)C ]x̄+ Ψ(x̄+ x(t))θ̄ + Φ(t, x̄, x(t), θ)(8a)
Φ(t, x̄, x(t), θ) := [Ψ(x̄+ x(t))−Ψ(x(t)) ]θ +B(t, x̄+ x(t))−B(t, x(t)) .(8b)

Conditions (5) and the assumption that θ ∈ Θ
where Θ is a compact of appropriate dimension
imply that there exists θM > 0 such that

|Φ(t, x̄, x(t), θ)| ≤ ψMθM |x̄|+ bM |x̄| =: φM |x̄| .
(9)

The following assumption on the observer gain
L guarantees that the state estimation errors
tend uniformly to zero; roughly the condition is
that the gain L, through the measurable output
y(t), makes the error dynamics persistently ex-
cited. Define yt := y(t) for each t. There
exists a globally bounded positive definite ma-
trix function P (·) such that pM ≥ |P | and,
defining Ā(t, yt) := A(yt) − L(t, yt)C, −Q(t, yt)
:= Ā(yt)>P (t) + P (t)>Ā(yt) + Ṗ (t) we have the
following for all t ≥ 0 and all yt ∈ Rm

1. Q(t, yt) ≥ 0

2. There exist µ and T > 0 such that∫ t+T

t
Q(τ, yτ )dτ ≥ µI > 0 , ∀ t ≥ 0

(10)

3. There exists qM > 0 such that qM ≥
|Q(t, yt)| .

We remark for further development that Inequal-
ity (10), which is known as persistency of exci-
tation, is equivalent to∫ t+T

t
ξ>Q(τ, yτ )ξdτ ≥ µ, ∀ t ≥ 0, |ξ| = 1 .

Next, consider the adaptation law

˙̂
θ(t) = −γΨ(x̂(t))>P (t)x̂(t) , γ > 0 (11)

which, considering that θ̇ = 0, is equivalent to

˙̄θ = −γΨ(x̄+x(t))>P (t)x̄−γΨ(x̄+x(t))>P (t)x(t) , γ > 0 .
(12)

In order to guarantee that the parameter errors
θ̄(t) → 0 we shall also impose a persistency-of-
excitation condition on the function Ψ(x(t)):
The function Ψ(x(t)) is such that there exist pos-
itive numbers µψ and Tψ such that, for any uni-
tary vector ζ ∈ Rm,∫ t+Tψ

t
|Ψ(x(τ))ζ| dτ ≥ µψ , ∀ t ≥ 0 . (13)

Under these conditions we have the following.
The origin of the estimation error dynamics

corresponding to x̄ and θ̄, i.e. equations (8)
and (12), is uniformly semi-globally practically
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asymptotically stable provided that: 1) condi-
tions (5) hold; 2) Assumptions 3 and 3 are sat-
isfied; 3) the solutions x(t) and their derivatives
ẋ(t) are bounded for all t.

Roughly, Proposition 3 establishes conditions
for the state and parameter estimation errors
to converge to an arbitrarily small neighbor-
hood of the origin. In the context of master-
slave synchronization of chaotic systems, Propo-
sition 3 establishes conditions under which two
chaotic systems with unknown constant param-
eters, synchronize, in the event that only an out-
put of the master system is measurable.

In the present context of synchronization, con-
ditions (5) are mild regularity properties that are
satisfied by a number of chaotic systems as we
shall illustrate below. The assumption on x(t) is
not restrictive either in the present context if we
assume that x(t) corresponds to the solutions of
an ordinary differential equation ẋ = f(t, x, θ)
such that for a particular choice of θ the sys-
tem exhibits a chaotic behavior and therefore,
x(t) is bounded. Boundedness of ẋ(t) follows di-
rectly from the usual hypotheses imposed on f
to guarantee existence and uniqueness of solu-
tions. The only conditions that are, in general,
hard to verify are the persistency-of-excitation
conditions; yet, we stress that this property has
been showed to be necessary for parameter con-
vergence, in the context of adaptive control (see
e.g. [?], [?]).

Assumption 3 is a structural condition on the
function Ψ(·) as well as on the richness of its
trajectories x(t). A particular method to verify
Assumption 3 on the PE of the observer gain is
using high-gain observers – cf. [?, ?, ?]. Accord-
ing with [?], we make the following detectability
hypothesis: Let Φx(t, t◦) denote the transition

matrix associated to A(yt), i.e., the solution of{
Φ̇x(t, t◦) = A(yt)Φx(t, t◦) ,
Φx(t◦, t◦) = I .

Assume that there exist positive numbers Tx and
µx, such that, for all t ≥ 0∫ t+Tx

t
Φx(τ, t)>C>CΦx(τ, t)dτ ≥ µxI . (14)

Next, for any given ρx > 0, we define the ob-
server gain L(t, y) as

L(t, yt) := P (t, yt)−1C> (15)
Ṗ (t, yt) = 2C>C − ρxI − P (t, yt)A(yt)−A(yt)>P (t, yt) , ∀ t ≥ ty◦ + Tx(16)
P (t, yt◦) = P◦ = P>◦ > 0 ∀ t ∈ [t◦, t◦ + Tx]. (17)

It can be shown that, under Assumption 3, one
has P (t, yt) ≥ µxe

−ρxTxI for all t ≥ t◦ + Tx. On
the other hand, a direct calculation yields that
the matrix

−Q(t, yt) := [A(yt)− L(t, yt)C]>P (t) + P (t)>[A(yt)− L(t, yt)C] + Ṗ (t, yt)(18)

with P and L given by (15) and (16), satisfies
Q(t, yt) ≡ ρxI, hence Assumption 3 is trivially
satisfied.

4 Adaptive Synchronization via
PE Observers

From the previous general developments, we
draw the following conclusions in the context of
master-slave synchronization.

Consider a chaotic master system of the form
(4) where θ is such that the solutions x(t) ex-
hibit a chaotic behavior. Let y = Cx be a mea-
surable output of the master system. Construct
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a slave system according to the dynamics (7),
(11). Then, under the conditions of Proposition
3 a slave system synchronizes with the master,
in the sense that x̂(t) approaches x(t) arbitrar-
ily close as t → ∞. In particular, we have the
following:

1. in the case that the parameters θ are un-
known, the errors |x(t)− x̂(t)| and

∣∣∣θ − θ̂
∣∣∣

approach an arbitrarily small neighborhood
of the origin as t → ∞. Moreover, the size
of this neighborhood may be reduced by in-
creasing the persistency of excitation, i.e.
µx and µ;

2. in the case that the parameters θ are un-
known but C = I, i.e. the whole master
system’s state is measurable, perfect syn-
chronization occurs and the parameters θ
may be estimated if the persistency of exci-
tation condition (13) holds;

3. in the case that the parameters θ are known,
the slave system will achieve perfect syn-
chronization provided that the persistency
of excitation condition imposed in Assump-
tion 3 holds.

4.1 Example: Lorenz system

For illustration we apply our main result in
the estimation of on estate and two parameters
of the well-known chaotic Lorentz system. The
latter is given by

ẋ1 = θ1(x2 − x1) (19)
ẋ2 = θ2x1 − x2 − x1x3 (20)
ẋ3 = x1x2 − θ3x3 . (21)

We assume to measure y1 = x1, y3 = x3 and that
we know θ1. Under such conditions the system
can be rewritten in the form (4) with y = x1,

A(y) :=

−θ1 θ1 0
0 −1 −y1

0 y1 0

 , Ψ(x) :=

0 0 0
0 x1 0
0 0 −x3

 .
(22)

Again, the functions above satisfy the required
regularity conditions imposed in Proposition 3.

We tested the proposed algorithm in simula-
tion under the following conditions: 1) For a
chaotic behavior we chose θ1 = 16, θ2 = 45.6 and
θ3 = 4; 2) the initial states are: x(0) = [1; 1; 1],
x̂(0) = [0; 0; 0], θ̂1(0) = 15, θ̂2(0) = 47, θ̂3(0) =
25; the gains are set to ρx = 150, γ = 0.0001,

P◦ =

5 1 2
1 8 3
2 3 9


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Figure 2. Estimate error for the second parameter, i.e. θ̄2
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Figure 3. Estimate error for the third parameter, i.e. θ̄3

Some representative simulation results are
presented in Figure 1–3. It may be appreciated
that practical asymptotic stability is achieved
with a relatively short transient. Exact syn-
chronization and parameter estimation are not
achieved as expected, due to the lack of mea-
surements and knowledge of the parameters.

5 Proofs

5.1 Proof of Proposition 3

The dynamics of the estimation errors z :=
col[x̄ , θ̄] is given by

ż = F (t, z)z +K(t, z) (23a)

F (t, z) :=
[

[A(yt)− L(t, yt)C ] −γΨ(x̄+ x(t))
−γΨ(x̄+ x(t))>P (t) 0

]
(23b)

K(t, z) :=
[

Φ(t, x̄, x(t), θ)
−γΨ(x̄+ x(t))>P (t)x(t)

]
. (23c)

Let βx be such that |x(t)| ≤ βx for all t ≥ 0 then,
from (9) and (6), it follows that

|K(t, z)| ≤ (ψMpMβx + φM ) |z1|+ pMψ0βx(24a)
=: b1 |z1|+ b2 . (24b)

Under the conditions of Proposition 3 the ori-
gin of ż = F (t, z)z is UGAS and uniformly ex-
ponentially stable on any ball. From the proof
of Claim 5.1 – cf. Section 5.2 we obtain, for any
r ≥ 0 and t◦ ≥ 0,

|z(t◦)| < r ⇒ |z(t)| ≤ k |z(t◦)| e−γ(t−t◦)
(25)

where k := 2ce1/2, γ :=
1

2c2
and c > 0 is defined

below (32). It follows, from the proof of [?, Theo-
rem 4.14], that there exists V4 : R≥0×BR → R≥0
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with R := kr, such that(
1− e−2qMT

2qM

)
|z|2 ≤ V4(t, z) ≤

(
1− e−2γT

2γ

)
|z|2

∂V4

∂t
+
∂V4

∂z
F (t, z)z ≤ −(1− e−2γT ) |z|2∣∣∣∣∂V4

∂z

∣∣∣∣ ≤ 2
γ − qM

[
1− e−(γ−qM )T

]
.

Evaluating the time derivative of V4(t, z) along
the trajectories of (23a) and using (24) we obtain

V̇4(t, z) ≤ −(1− e−2γT ) |z|2 +
2

γ − qM

[
1− e−(γ−qM )T

]
(b1 |z|2 + b2 |z|)

hence if, for any given ε > 0, b1, b2 and z satisfy

b1 ≤
(
1− e−2γT − ε

)
(γ − qM )

4
[
1− e−(γ−qM )T

] (26)

|z| ≥ b2
4
[
1− e−(γ−qM )T

]
(1− e−2γT − ε) (γ − qM )

(27)

we obtain
V̇4(t, z) ≤ −ε |z|2 .

It follows that the solutions are uniformly ulti-
mately bounded – cf. [?, p. 172] for all initial
conditions such that |z◦| < r. On the other hand,
the term on the right hand side of (27) may be
reduced at will by enlarging γ (i.e., by enlarging
c hence, µ and µψ) while the calculations above
hold for r arbitrarily large but finite; hence, it
follows that the origin is semiglobally uniformly
practically asymptotically stable.

5.2 Proof of Claim 5.1

The proof of Claim 5.1 relies on the following:
The origin of the system ˙̄x = [A(yt)−L(t, yt)C ]x̄
is UGES. There exists cz1 < ∞ such that

the function t 7→ z1 generated by the differen-
tial equations ż = F (t, z)z where F is defined in
(23b), satisfies∫ ∞

t◦

|z1(t)| dt ≤ cz1 |z◦| ∀ t ≥ t◦ ≥ 0 (28)

and moreover, the origin of ż = F (t, z)z is UGS
with κ(s) := cz0s – cf. Ineq. (2), and

cz0 :=

√√√√√√√
max

{
pM ,

1
γ

}
min

{
pm ,

1
γ

} . (29)

There exists cz2 < ∞ such that the function
t 7→ z2 generated by the differential equations
ż = F (t, z)z where F is defined in (23b), satisfies∫ ∞

t◦

|z2(t)| dt ≤ cz2 |z◦| ∀ t ≥ t◦ ≥ 0 . (30)

From Claims 5.2 and 5.2 above it follows that∫ ∞

t◦

|z(t)| dt ≤ cz |z◦| ∀ t ≥ t◦ ≥ 0 (31)

where cz := max{cz1 , cz2}. It follows from [?,
Lemma 3] that the origin is uniformly exponen-
tially attractive on any ball, that is, it is uni-
formly globally attractive and, moreover, for any
r > 0 we have that

|z(t◦)| < r ⇒ |z(t)| ≤ 2ce1/2 |z(t◦)| e
−

1
2c2

(t−t◦)

(32)
with c := max{cz , cz0}. We conclude that the
origin of the system is UGAS and uniformly ex-
ponentially stable on any ball.

Notice that as c decreases, the rate of conver-
gence γ := − 1

2c2
increases. As we show in the

proof of Claim 5.2 the latter is made possible by
enlarging µ and µψ .
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5.3 Proof of Claim 5.2

Consider Assumption 3. It is a standard re-
sult in adaptive control literature –cf. [?] that
the condition (10) is equivalent to: (A) for any
unitary vector ξ ∈ Rn we have

∫ t+T

t
ξ>Q(τ, yt)ξdτ ≥ µ ∀ t ≥ 0 . (33)

That is, φ(t) := ξ>Q(τ, yt)ξ is PE and satis-
fies φM ≥ |φ(t)| for all t ≥ 0.Consider now the
function V1(t, x̄) := x̄>P (t)x̄; its total derivative
along the solutions of ˙̄x = Ā(yt)x̄ yields, by as-
sumption, V̇1 = −x̄>Q(t, yt)x̄ ≤ 0. This implies
that, defining pm and pM as

pm := inf
|ξ| = 1
t ≥ 0

ξ>P (t)ξ pM := sup
|ξ| = 1
t ≥ 0

ξ>P (t)ξ ,

(34)
the solutions of ˙̄x = Ā(yt)x̄ satisfy

|x̄(t+ T )|2 ≤ pM
pm

|x̄(τ)|2 , ∀ τ ∈ [t, t+T ] , t ≥ 0 .

(35)
It follows from this, the equation V̇1(τ, x̄(τ)) =
−x̄(τ)>Q(τ, yτ )x̄(τ) and (33) that

V1(t, x̄(t))− V1(t+ T, x̄(t+ T )) ≥
∫ t+T

t
x̄(τ)>Q(τ, yτ )x̄(τ)dτ

≥
∫ t+T

t
|x̄(τ)|2

(
inf

|ξ| = 1

ξ>Q(τ, yτ )ξ
|ξ|2

)
dτ

≥
∫ t+T

t

pM
pm

(
inf

|ξ| = 1

ξ>Q(τ, yτ )ξ
|ξ|2

)
dτ |x̄(t+ T )|2

≥ µpM
pm

|x̄(t+ T )|2

which implies that∫ t0+T

t0

pMµ

pm
|x̄(t)|2 dt+ V1(t0, x̄(t0))− V1(t0 + T, x̄(t0 + T )) ≥

∫ ∞

t0

pMµ

pm
|x̄(t)|2 dt(

T
pM
pm

+
2pm
µ

)
|x̄(t0)|2 ≥

∫ ∞

t0

|x̄(t)|2 dt (36)

It follows from [?, Lemma 3] that the origin of
˙̄x = A(yt)x̄ is globally exponentially stable, uni-
formly in yt. Moreover, defining

c :=

√
max

{(
T
pM
pm

+
2pm
µ

)
,
pM
pm

}
(37)

we have

|x̄(t)| ≤ 2ce1/2 |x̄◦| e
−

1
2c2

(t−t◦)
. (38)

5.4 Proof of Claim 5.2

The proof follows naturally from the proof of
Claim 5.2. Consider the positive definite func-
tion

V2(t, z) := z>1 P (t)z1 +
1
γ
|z2|2 ; (39)

its total derivative along the solutions of ż =
F (t, z)z yields V̇2(t, z) = V̇1(t, z) ≤ 0 which im-
plies that pm |x̄(t)|2 + (1/γ)

∣∣θ̄(t)∣∣2 ≤ |z(t)|2 ≤
pM |x̄(t◦)|2 + (1/γ)

∣∣θ̄(t◦)∣∣2. It follows that the
system is UGS, in particular, it satisfies

|z(t)| ≤ cz0 |z(t◦)| ∀ t ≥ t◦ ≥ 0

with cz0 as defined in (29). The first part of the
claim follows observing that (36) still holds for
the trajectories of ż = F (t, z)z hence, (28) holds
with

cz1(µ, T ) :=
√
T
pM
pm

+
2pm
µ

.

Notice that for each fixed T , c(µ, T ) → 0 as µ→
∞.
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5.5 Proof of Claim 5.2

Let r > 0 be an arbitrary number and define
R := cz0r. Consider the system ż = F (t, z)z
with initial conditions satisfying |z◦| < r; then,
we have that |z(t)| < R for all t ≥ t◦. Consider
the function V3 : R≥0 ×BR → R≥0 defined as

V3(t, z) = V2(t, z)−ε
(∫ ∞

t
e(t−τ) |Ψ(x(τ))z2|2 dτ + z>1 Ψ(x(t))z2

)
.

(40)
Under Assumption 3 we have that

−
∫ ∞

t
e(t−τ) |Ψ(x(τ))z2|2 dτ ≤ −µψe−Tψ |z2|2

hence, in view of the boundedness of x(t) and the
Lipschitz property of Ψ we have that V3 is pos-
itive definite for sufficiently small ε; moreover,
there exist positive numbers α1, α2 such that

α1 |z|2 ≤ V3(t, z) ≤ α2 |z|2 .

On the other hand, the time derivative of V3

along the trajectories of ż = F (t, z)z yields

V̇3(t, z) = V̇2(t, z)− εe−T
µ2
ψ

Tψ
|z2|2 − εz>1 [

˙︷ ︷
Ψ(x(t))z2 − γΨ(x(t))Pz1 ]

(41)

− ε[ (A− LC)z1 + ( Ψ(z1 + x(t))−Ψ(x(t)) )z2 ]Ψ(x(t))z2 .
(42)

Under the regularity assumptions made on x(t),
Ψ etc., and considering that |z(t)| < R, it follows
that there exists a number cR such that

V̇3(t, z(t)) ≤ − εe−Tψ
µ2
ψ

Tψ
|z2(t)|2 + εcR[ |z1(t)| z2(t) + |z2(t)| ]

(43)

≤ −

(
εe−Tψ

µ2
ψ

Tψ
− ε

2

)
|z2(t)|2 + (c2R + 1) |z1(t)|2

(44)

which, defining cθ :=
(
εe−Tψ

µ2
ψ

Tψ
− ε

2

)
is equiva-

lent to∫ ∞

t◦

cθ |z2(t)|2 dt ≤ V3(t◦, z(t◦)) + (c2R + 1)c2z1

∫ ∞

t◦

|z1(t)|2 dt .

(45)

The result follows with

cz2(Tψ, µψ) :=

√
α2 + (c2R + 1)c2z1

cθ
.

Notice that cz2(Tψ, µψ, µ) → 0 as µψ → ∞ and
µψ →∞.

5.6 Proof of Proposition 4

The proof follows from the developments of
the previous section. In the first case, the syn-
chronization error dynamics is given exactly by
(8) and (12) whose origin has been showed to
be uniformly semiglobally practically asymptoti-
cally stable. In the second case, the synchroniza-
tion error dynamics corresponds to equations (8)
and, instead of (12),

˙̄θ = −γΨ(x̄+ x(t))>P (t)x̄ γ > 0 .

In this case, b2 in (24b) is zero and therefore,
the calculations involved in the proof of Propo-
sition 3 hold for all |z| ≥ 0. In the case of the
high-gain observer, notice that the synchroniza-
tion may be achieved from any initial errors. In
the third case, the synchronization dynamics is
given simply by equation (8) with θ̄ ≡ 0 and
the result follows from the proof of Claim 5.2 for
sufficiently large µ.
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6 Conclusion

We presented an adaptive observer scheme
for detectable systems which guaranteed uniform
semiglobal practical asymptotic stability. In par-
ticular, we have shown that under certain per-
sistency of excitation conditions the estimation
errors tend to an arbitrarily small neighborhood
of the origin. Our scheme applies naturally to
the problem of master-slave synchronization in
the case of parameter uncertainty of the master
system.
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