
 

I.  Introduction. 

 

The understanding of the dynamic behavior in real physical or industrial system is of 

almost importance, for analysis,  synthesis, prediction, etc. 

It’s  sensible to consider that the behavior of many physical systems like phytoplankton 

,solar activity, oscillation of waves is a combination between chaotic or stochastic 

processes, which can be successfully used for prediction of health applications, 

meteorological phenomena etc. 

Many physical/ chemical or sometimes financial phenomena are considered as being only 

chaotic ((ex. Belousov–Zhabotinsky_reaction 1) or purely stochastic (stock model price, 

integral Ito, Black-Scholes model), but in fact they are both deterministic and stochastic (1-

2). 

So it is of utmost interest to find new models taking into account both behaviors, stochastic 

and chaotic, to understand and predict better the real physical phenomena, but also to 

model data for biomedical applications like (ECG, IRM, …. To be completed)  The 

original idea in this paper  is to juxtapose methods from stochastic signal analysis 

(nonstationary Gaussian processes, statistics from limit theorems by Nordin, Hurst 

exponent),  and nonlinear (chaotic) dynamical system analysis (phase portrait, phase 

delayed plot, Lyapunov exponents), to develop a common methodology to analyze 

complex time series. Assuming that these two behaviors are inherently correlated,  we are 

analyzing  if there exists  a correlation exists between the stochastic quantifiers (Hurst 

exponent, Garch method,ARMA) and chaotic quantifiers (Lyapunov exponents). To do 

that, different kind of stochastic-chaotic mixed processes shall be modeled and analyzed  

from different points of view to be developed. 

 

 

Proposed methodology.  As classical approach, we assume a priory stochastic nature of 

time series model and construct a mathematical model as a random process. Hurst 

exponent is defined like the estimate Ĥ  of approximated fractional Brownian motion for 

these time series. On the other hand, for some deterministic systems, where the state is the 

solution of nonlinear differential or difference equation like ( )x X tn n , the behavior can be 

highly irregular and extremely complex. In some cases the behavior is estimated like 

chaotic. In the first approximation, we can determine the chaocity  by the property of the 



system to construct i trajectories in a bounded domain of the phase space. Properties of 

dynamical systems which generate chaotic solutions, has been widely discussed (results 

and references in the monographs The simplest example is an one-dimensional dynamical 

system 

                                                      ( , )1x f xn n   

which generates chaotic solution for some functions f and values of parameter  . In 

particular, for logistic function  f 

                                                   (1 ),0 x 1, 01x x xn n n n       

 

 the plot of solution looks like white noise with some values 3,6   

So, the  problem statement the nature of time series analysis nature is do the observed data 

have stochastic nature, or deterministic. 

A lot of papers have been devoted to this problem by 90s. The essence of these results is as 

follows. Let's construct some statistics of observed time series, the values of which will be 

different from random or deterministic chaotic sequences. 

There are a lot of criteria of difference  between chaotic and stochastic nature of time series 

developed in the last years. 

One of the main characteristics of the a priori deterministic series is the Lyapunov 

exponent  . It's using a presence of dynamical system, which is generating research data 

by estimation of  Lyapunov exponent, so it doesn't work for the algorithm of random 

process for calculation  . The criterion of  chaotic for a  deterministic time series is a 

positive Lyapunov exponent. It’s equal ln 2   for logistic sequence 4 (1 )1x x xn n n  . 

 Note that the above results have been proved only for a certain class of dynamical systems 

which  generated deterministic chaos. As usual, the situation of mixture "chaotic-

randomness" is a normal for the natural observed data (one of the main task is to determine 

their correlation in the time series). It's normal to expect that the quality of the 

approximation of this mixture depends on the  specified ratio in the proposed model 

(approximation of a random process fbm and the quality is defined by the specified 

statistics   , ,A B Dn n n ). 

         fBm H=0.2 H=0.5 H=0.6 

Tent map 0.5766 0.0078 1.0569 

Mixture (α=0.2) 0.9591 0.8721 2.6039 

Lorenz 1.8544 1.6360 1.9381 

Mixture (α=0.5) 0.9244 1.0678 2.8903 



Reminder. 

Let’s assume that the observed data can be successfully modeled by non-stationary Gaussian 
process (fractional Brownian motion). Statistical hypothesis T explains that the investigated time 

series 1,.., nz z  is an implementation of fBm.  

Let’s ( ),0 1B t t   is a fractional Brownian motion with Hurst exponent H ,f  is a twice 

differentiable function, where  

                                
( )(| ( ( ) | )k pf B t   , 1,2k  ; 

Let’s note 
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                 where N is normal distribution  μ=0 and standard deviation σ=1.   

The following limit relations have to be verified  papers of Nourdin  16 19 : 
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Assume in the first formula 2( ) , ( )f x x f x x  , so let’s get: 
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Let’s put 2( )f x x  in the second formula 
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For the third formula in ( ) , ( ) 1f x x f x   
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The relations (1.3) and (1.4) enable us to test the hypothesis ܶ = 1z,..., ݏܿ݅ݐݏ݅ݐܽݐݏ ℎ݁ݐ} zn  ,  which 

obtained by transformation of real data, are modeled by increments of fractional Brownian 
motion }. 

The algorithm of checking (with known H) is following: 

Denote 
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we assume that hypothesis T is done or: 
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If the hypothesis T is true, then according to (1.1-1.4) and the following theoretical leads to: 
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The hypothesis T accepted by comparing the experimental values of statistics , ,n n nA B D with 

their limiting theoretical values. Let’s define deviation from the limit value like    
A An

A



 for 

statistics An . 

The limit distribution functions for Bn  and Dn  
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                Where    is an Laplace function 0,5(2 2)H    

Hypothesis  Т is accepted, if 

                                      ,0 1Bn     for H<0,5 ; 0 2Dn    for H>0,5        (1.6) 

where ,1 2    are quintiles of distributions 1F and  2F , corresponding to the selected significance 

level  0,1.  Then 
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1. Generate 3000 values fBm for Н=0,2   0,4    0,6     0,8     1,..., nx x ,  0 0, 3000x n  and to 

normalize these values (such as 
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Fractional Brownian motion is defined as a Gaussian random process with characteristics: 
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Where H is the Holder exponent which measures the regularity and smoothness of trajectories of 
process , and  t and s are periods of time. 

Note that with H=0,5  we get a standard Wiener process or white noise. With  
1

2
H  the 

increments are form the sequence with short,  
1

2
H  with a long memory. 

Smoothness of the trajectories of the process ( )HB t  is defined by the parameter H: almost all the 

trajectories satisfy the Holder condition:  

                                                     ( ) X(s) ,X t c t s H      

which generalizes known Levy's result for the Wiener process (reference). 

       The increments of fBm  2 1( ) ( ),H HB t B t 4 3 1 2 3 4( ) ( ), tH HB t B t t t t     

  are form a Gaussian random vector with a correlation between the coordinates: 
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For discrete time: 
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we obtain the correlation coefficient: 
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       it means that increments are forming stationary (in the narrow sense) sequence. 

 
2. Take 3000 from the table (solution of differential equation in Lorenz attractor) in 

application (5001-8000) and cutting the trend. Trend is consider as a mean in our case. It’s 



possible to approximate time series by linear function.  Usually this is done using a 
logarithmic, exponential, or (not so often) polynomial transformation of data. 

3. Denote the obtained array as 1 3000,...,c c  and normalize it :   
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If we approximate the trend by piecewise linear function: 
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Let’s consider the sequence , 0;0, 2;0,5;1;2k k kw u v    and study the behavior of statistics 

for this mixture upon calculation , ,n n nA B D which are the follows from limit theorems. 
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                                                              And construct the statistics: 
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The limit theorems for statistics from increments of fractional Brownian motion  have been 

proved in works of I.Nourdin and others [16-19] . 
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                 . 

There is a Mean-square convergence: 

, ,       

, ,       

where 

; 

 

, ,                                             

These results allow us to estimate the adequacy of  model with the basic process-fractional 

Brownian motion. 

 
These statistics allow to define the contribution of chaotic component in modified fBm

( )k H
k

v B
n

  (where H is Hurst exponent,   is an amplitude) to be compared with ideal 

(а=0)). 

We’ve got the results as 4 tables for every H with 5 columns (ܽ = 0; 0,2; 0,5; 1; 2 )   and the 
values of control statistics ܣ௡,  ܤ௡,   ܦ௡  and the quintiles.  

Let’s random value X has a distribution function F(X). α-quintile is an solution of equation 
1( )ax F a  

 where α is probability, that random value X will take a value less or equal to  

, ( )a ax P x x a  . 
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                    The block-diagram, which is describe approximation method 



 

                                                         

INITIAL DATA 

Analysis of the time series and  the selection of preprocessing method 

Processing 

the logarithm of data Approximation of trend Other methods 

                           The calculation of power characteristics and kurtosis (1) 

 

Decision about the Gaussian approximation (Y/N) 

                                          The approximation of increments with  fbm; 

Estimation of Hurst exponent and volatility 

 

Checking the quality of approximation with statistics  

The forecast of transfored data 

                                                       Analysis of results 



Appendix 

 

             Table 1: Control statistics of mixture between fBm and Lorenz attractor (α = 1;2;10; 
n=3000) 

 

     
 

  

   0,2 α =1 0,15 10,0 −83 2046 −0,84 1,57 3,05 

α =2 0,15 6,83 −39,3 1397 −1,26 2,6 3,7 

α =10 0,2 −48,8 −182 −4663 −45,5 227 22,5 

 0,4 α =1 0,15 11,8 −113 2413 −0,75 1,37 2,88 

α =2 0,15 11,9 −111 2430 −0,81 1,52 3,0 

α =10 0,3 1,37 −4,11 28,6 −3,14 7,73 5,90 

0,6 α =1 0,15 11,0 −101 2265 −0,72 1,31 2,83 

α=2 0,15 10,7 −93 2180 −0,72 1,31 2,83 

α =10 0,15 7,27 −38,0 1487 −0,78 1,43 2,93 

0,8 α =1 0,15 10,95 −101 2239 −0,72 1,31 2,83 

α =2 0,15 10,4 −92,5 2132 −0,72 1,31 2,83 

α =10 0,15 6,32 −38,0 1293 −0,73 1,32 2,84 

 

The table data shows about “aggressiveness” of the chaotic component in relation to stochastic 
for ܪ௙஻௠ ൒ 0,2 ሺ݂ݎ݋ ܽ = 1, ܽ = 2).  

The character of combination of generated fBm (for specified values H) defines Lorenz attractor, 
that means that the values of control characteristics are so far from the limits), which indicates 
the impossibility of approximation. 

For 2,0fBmH   satisfactory approximation is possible only for а = 10. 

Persistence (ܪ෡ ൐ 0,5 ) of investigated time series  (ܦ௡ ൏  :ଶ) means it has stochastic natureߚ 
antipersistent  (  ܣ௡ ൎ ,ܣ |௡ܤ| ൏  .ଵ ) admits the  existence of chaotic componentߚ
 Thus, satisfactory approximation in natural time series means  their stochastic nature, or the 
presence of "resonance" (with a random component) chaotic sequence. 

 

 

 



 

Figure 1. Phase portrait of Lorenz attractor. 

 

 

        Figure 2. Phase portrait of Tent map. 

 

Figure 3.  Phase portrait of fractional Brownian motion. 

  



 

Figure 4. Phase portrait of Lorenz attractor+fractional Brownian motion (H=0.2)

 

Figure 5. Phase portrait of Lorenz attractor+fractional Brownian motion (H=0.8) 

 

Figure 6. Tent map. 



 

Figure 7. Tent map+ fractional Brownian motion (H=0.2) 

 

Figure 8. Tent map+ fractional Brownian motion (H=0.8,  α=2) 
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