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Abstract
A projective approach is considered to modelling and

optimization of controlled motions for elastic beams.
The approach is based on an integrodifferential formu-
lation of the original PDE system and FEM technique.
A discretization scheme is worked out and an explicit
energy criterion of solution quality is proposed. The re-
sult ODE system is used to design the optimal control
that minimizes the terminal beam energy. The numeri-
cal results obtained are analyzed and discussed.
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1 Introduction
The design of control strategies for dynamic systems

with distributed parameters has been actively studied in
recent years. Processes such as oscillations, heat trans-
fer, diffusion, and convection are part of a large variety
of applications in science and engineering. The the-
oretical foundation for optimal control problems with
linear partial differential equations (PDEs) and convex
functionals was established by [Lions, 1971], [Lions,
1988]. Linear hyperbolic equations are treated, besides
in Lions’ book, in [Ahmed and Teo, 1981], [Butkovsky,
1969]. An introduction to the control of vibrations
can be found in [Krabs, 1995]. Oscillating elastic net-
works are investigated in [Gugat, 2005], [Lagnese et
al., 1984], [Leugering, 2000].
Different approaches to discretization of dynamical

models with distributed parameters are developed to
reduce the original initial-boundary value problem to
an ODE system. It is worth noting the variational and
projection methods using to solve control problems for
elastic structure motions. The method of integrodiffer-
ential relations (MIDR) was proposed in [Kostin and

Saurin, 2006] for the optimal control design of elas-
tic beam motions. Variational principles on the basis
of the MIDR and their relations with the conventional
variational formulations for linear elastic systems are
studied in [Kostin and Saurin, 2009]. A projective ap-
proach is developed as a modification of the Galerkin
method in the frame of the MIDR for dynamical sys-
tems described by linear parabolic PDEs in [Rauh et
al, 2010]. In the paper this approach combined with
the finite element method is extended to modeling and
optimization of controlled dynamical systems with dis-
tributed elastic and inertial parameters.

2 Statement of the optimal control problem
Consider controlled motions of a rectilinear elastic

beam described by the following PDE system with
boundary and initial conditions:

ṗ+m′′ = 0,

η := ẇ − p/ρ = 0,

ξ := w′′ −m/κ = 0,

y ∈ (0, L), t ∈ (0, T );

m(t, L) = m′(t, L) = w′(t, 0) = 0,

w(t, 0) = u(t); w(0, x) = w0(x),

p(0, x) = p0(x), u(0) = w0(0).

(1)

Herep is the linear momentum density;m is the bend-
ing moment in the beam cross section;w are the lateral
displacements;L andρ are the length and linear den-
sity of the beam, respectively;κ is its flexural rigidity;
w0 andp0 are known functions of the spatial coordi-
natex; u is the control input (displacement of the beam
end) andT is the terminal instant of the control process.
The dotted symbols denote the partial derivatives with
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Figure 1. Optimal controlu(t) and displacementw(t, L).
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Figure 2. Integral error vs.N for the optimal motion.

respect to the timet, and the primed symbols stand for
the partial derivatives with respect to the coordinatex.
The problem is to find an optimal controlu∗(t) in a

given control setU that moves the beam from its ini-
tial state to the terminal positionw(T, 0) = wT in the
fixed timeT and minimizes an objective functionJ [u]
(terminal mechanical energy of the beam):

J [u] = E(T ) → min
u∈U

,

E(t) =

L∫
0

ψ(t, x)dx, ψ =
ρp2

2
+
κ (w′′)2

2
.

(2)

To solve the initial-boundary value problem (1), we
apply the MIDR, in which the local equalitiesη = ξ =
0 and initial conditions are replaced by integral rela-
tions, whereas the first equation in (1) and boundary
conditions are satisfied exactly.

3 Discretization algorithm

Let us firstly eliminate the functionm taking into ac-
count the first equation in (1) and boundary conditions
atx = L as follows

m = −
L−x∫
0

y∫
0

ṗ(t, L− y1)dy1dy (3)

and then define a space mesh with the nodes:

x0 = 0, xM = L, 0 ≤ xj−1 < xj ,
Ij = (xj−1, xj), j = 1, . . . ,M.

To find an approximate solution of the optimization
problem (2), the functionsp andw are approximated
by piece-wise polynomial space splines

w ∈ S(N+2)
w ={
w(t, x) : w =

N+2∑
j=0

wij(t) (x/L)j
,

x ∈ Ii, i = 1, . . . ,M ;

w ∈ C1, x ∈ [0, L],

w10(t) = u, w11(t) = 0
}
,

p ∈ S(N)
w ={

p(t, x) : p =
N∑

j=0

pij(t) (x/L)j
,

x ∈ Ii, i = 1, . . . ,M
}
,

w(t) = {w1, . . . ,wM} ,

wi = {wi2, . . . , wi,N+2} ,

p(t) = {p1, . . . ,pM} ,

pi = {pi0, . . . , piN} , i = 1, . . . ,M ,

(4)

wherew(t) andp(t) are vector-functions defining the
unknown displacementsw and linear momentum den-
sity p.

A projective approach is used to reduce the original
PDE system to a system of ODEs with initial condi-



tions in the form

L∫
0

η(t, x,w,p, u)χ(x)dx = 0,

L∫
0

ξ(t, x,w,p, u)χ(x)dx = 0,

∀χ ∈ S(N)
χ =

{
χ(x) :

χ =
N∑

j=0

χijx
j/Lj , x ∈ Ii, i = 1, . . . ,M

}
,

L∫
0

[w(x,w(0), u(0))− w0(x)]χ(x)dx = 0,

L∫
0

[p(x,p(0))− p0(x)]χ(x)dx = 0.

(5)

Hereη andξ are obtained by substituting relations (3)
and (4) in (1). The following relative integral error is
proposed to estimate the quality of these approxima-
tions

∆ = Φ/Ψ, Φ =

T∫
0

L∫
0

ϕ(t, x)dxdt,

Ψ =

T∫
0

L∫
0

ψ(t, x)dxdt,

ϕ =
ρη2

2
+
κξ2

2
.

(6)

The consistent polynomial control input

u ∈ U =
{
u :

u = w0(0) +
wT t

T
+
t− T

T

K∑
i=1

uit
i

T i

} (7)

is considered. After solving the initial value problem
(1) for the undefined vectoru = {u1, . . . , uK} of con-
trol parameters, the result vector-functionsw(t,u) and
p(t,u) is used to minimized a modified objective func-
tion

J1[u] = J [u] + γ
Φ
T
→ min

u
,

where the last term is added with some dimensionless
weight coefficientγ to regulate the accuracy of optimal
solution.

Figure 3. Energy density distributionψ for the optimal motion.

Figure 4. Local error distributionφ for the optimal motion.

4 Numerical results
The following dimensionless parameters of the con-

trol problem , and approximations are given:

ρ = κ = L = 1, T = 2,

wT = 1, K = 4, M = 1, N = 8.

The optimal controlu∗(t) is shown in Fig. 1 by a solid
curve. The corresponding objective function isJ1 ≈
2.3 × 10−5. The displacement of the free beam end is
presented by a dash curve.
The integral errorΦ is shown in Fig. 2 as a function

of the approximation orderN . For the orderN = 8
the relative error of the numerical solution is equal to
∆|N=8 = 3.3× 10−8. The distribution of mechanical
energy densityψ(t, x) stored during the optimal mo-
tion is depicted in Fig. 3. The function of local error
ψ(t, x) is presented in Fig. 4.

5 Conclusion
Dynamical control problems for elastic structures

are considered. A projective algorithm of numerical



simulation and control optimization for these initial-
boundary value problems is worked out based on the
method of integrodifferential relations. The algorithms
allow one to estimate explicitly the local and integral
quality of numerical solutions obtained. As an exam-
ple, an optimization problem of longitudinal controlled
motions of a elastic beam clamped on a track is inves-
tigated.
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