A study on global stabilization of a class of
discrete-time systems by using symbolic dynamics
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Abstract— In this report, a control method for the stabiliza-
tion of periodic orbits for a class of one-dimensional discrete-
time systems that are topologically conjugate to symbolic
dynamics is proposed. A periodic orbit is assigned as a target
by giving a sequence in which symbols have periodicity. As a
consequence, it is shown that any periodic orbits can be globally
stabilized by using arbitrarily small control inputs. This work
is the first attempt to systematically design a control system
based on symbolic dynamics.

I. INTRODUCTION

Chaos, signifying randomness and irregularity, is ubiq-
uitous in nonlinear dynamical systems. The hallmark of
chaos is sensitive dependence of the system’s state on initial
conditions. That is, a small error in the initial conditions can
lead to a large error in the state of the system after a finite
time interval. In many practical situations it is desirable if
chaos can be avoided. The OGY-method[1], [2] was proposed
as the first method controlling chaos in 1990, and since then,
much related research has been carried out. The principal
purpose of chaos control is stabilization of a periodic orbit
embedded in an attractor.

Symbolic dynamics is introduced in order to character-
ize the orbit structure of a dynamical system via infinite
sequences of “symbols”[3], [4]. The study on symbolic
dynamics has a long history. The first application was
shown in Hadamard’s work of geodesics on surfaces of
negative curvature[5]. Birkhoff used symbolic dynamics in
his studies of dynamical systems[6]. Morse and Hedlund
studied symbolic dynamics as an independent subject[7].
Levionson applied it for the study of the forced van der
Pol equation[8], and from his result, Smale introduced the
well-known horseshoe mapping[9]. In chaos engineering,
symbolic dynamics is used for chaos communication[10] and
the targeting problem[11], [12].

The purpose of our study is global stabilization of a
periodic orbit embedded in an attractor. To this end, first,
a control law is designed in the sequence space such that the
target periodic orbit becomes asymptotically stable. Next,
the control law is transformed to the state space. We also
apply the control method to a population model in ecosystem
so that the number of individuals is fluctuated in a pre-
scribed periodic way. Our work is the first exposition that
uses symbolic dynamics systematically in order to design
control systems. The use of symbolic dynamics for design
is effective in the sense that it is possible to stabilize any
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periodic orbit with arbitrarily small inputs, which is not an
easy task with the conventional state space approach.

II. SYMBOLIC DYNAMICS

Let us consider a one-dimensional discrete-time dynamical
system given by

Tnt1 = f(n), Tn €R. (1
Assume that there is a positively invariant set X C R.

A. Symbolic dynamics
Let S ={0,1,---, N} be a set of symbols, and let (N+1)

subsets X; for ¢ € S be disjoint sets, the union of which is
the invariant set X.

X:X()UX1UUXN, XZQXJZQ (Z?A‘])
Let the symbol s; € S be as follows'.
fiz) € Xp = s = k.

Let also the set X be the direct product of S, ¥ :=
[1:2,S: (S; = S), which is called sequence space, and
define a mapping ¥ : X — X by

\I/(,CC> = 8098182, S; € S.

Describe the one-side infinite sequence ¥(z) as p. Further-
more, define a mapping o : ¥ — X as follows.

U(Sn5n+15n+2 e ) = Spn+4+15n428n43 " .

This mapping is called shift mapping.

Denote the dynamics of the mapping f on its invariant
set X as (X, f), and the dynamics of the mapping o on
Y as (3,0). When ¥ is a homeomorphic mapping and
satisfies 0 o ¥ = W o f, the pair (X, f) and (X,0) is
said to be topological conjugate, which is represented by
the commutative diagram in Fig. 1. Then, the system (3, o)
is called symbolic dynamics for the system (X, f).

X—f>X
y 2 %

Fig. 1. The commutative diagram

Remark 1: The study on symbolic dynamics has a history
of over a century, and many dynamical systems that are
topologically conjugate to symbolic dynamics are known[4].

L#%(-) means taking the composition of f with itself i times.



The advantages of using symbolic dynamics are pointed out
as follows. If symbolic dynamics can be introduced for an
original dynamical system in the state space, the description
of time evolution in the sequence space, that is, shifting
symbols, is simpler than that of the original system. It is
easier to focus on certain properties of a dynamical system.
For example, the existence of a periodic orbit with any period
can be easily proven, and it is even possible to show there
is a dense orbit in the state space.

B. Periodic orbits and the stability

Definition 1: If a trajectory {xq, z1, - } of the dynamics
(X, f) satisfies that x,, 7 = x,, for some constant T' € N,
the trajectory is called a T-periodic orbit or simply a periodic
orbit. Then, each point of the T-periodic orbit is called a T-
periodic point or a periodic point.

For a sequence corresponding to a periodic point, we have
the following proposition.

Proposition 1: A state z € X is a T-periodic point if and
only if the sequence p € ¥ corresponding to = consists of

infinitely repeated T-length blocks of symbols.
p=V(x)=

5152...ST 8182...5T e,
—_—— ———

T-length block  T-length block
In this report, we describe a periodic point in X and a
sequence in Y corresponding to it by adding ” ~ 7, as & and
p = 8081 -+ := U(Z), respectively. Furthermore, denote a
T-Periodic orbit by a finite set vy = {Zo,Z1, " ,T1r—1}s
and let 1 be a set of sequences corresponding to yr as
follows.

yT:{ﬁOaﬁlf" aﬁT—1}7 ﬁL:lI/(jL);Z:1527 aT'

We define the distance between a state x+ € X and a
periodic orbit v C X by d(z,vr) = I’I€lin |z — y|, and
yerr

also define the stability of a periodic orbit as follows.

Definition 2: A periodic orbit v is said to be stable if,
for all ¢ > 0, there exists a § = d(¢) > 0 such that, for
any solution {f™(zo)} satisfying d(xzo,yr) < &, we have
d(f™(x0),yr) <e forall n > 0.

Definition 3: A periodic orbit yr is said to be globally
asymptotically stable if it is stable and, for any initial state
Zg, we have T}LH;O d(f™(x0),yr) =0

IIT1. DESIGN OF A CONTROL SYSTEM BASED ON
SYMBOLIC DYNAMICS

Now, let us consider the following control system for the
original system (1).

Tn+1 = f(xn) + Unp. 2)

We formulate the problem to be tackled in this report as
follows.

Problem: Design a control law (i.e. u,, in (2)) that glob-
ally stabilizes the unstable periodic orbit v in the system
(1). Furthermore, design a control law that accomplishes the
stabilization of vy with arbitrarily small inputs.

A. Control law in the sequence space

In the sequence space X, the time evolution of sequences
by the shift mapping o is described as

Prn+1 = U(pn)' 3)

Here, p,, is the sequence corresponding to the state x,,.
Designing a control system that satisfies the requirements
of the problem is equivalent to altering o so that an orbit
starting at an arbitrary initial sequence py converges to
P C X corresponding to v C X. We notice that, due
to the metric % in ¥, the more symbols from the left agree in
p and p’, the closer p and p’ are. Therefore, new o, which we
denote as 7, requires rewriting symbols in the sequence. Let
k and [ be integers with k£ > 0, [ > 1, respectively. Assume
that each of the T-periodic sequences in &1 consists of
infinitely repeated T-length block Pr = riry---rp. The
mapping of the new system in X, closed-loop system,

Pn+1 = 7T(pn) (4)

should have the following time evolution.

P =S80 Sk-15k ©rSk4+1—-28k+1—1" " Sk+21-3 """
ﬂ'p) =818k Bkl Skai—15k+l < Spgai—2--- (5)
2 _ _ _ _ _
To(p) = S2 - Skt15k42 Skl  Skgltl: " Sk2—1--

The above underlined blocks consist of several Pr’s with [-
length. The parameter £ is the place that the target symbols
are inserted in. The parameter [ is the length of the inserted
target symbols. As a consequence, the orbit {7n"(p)}>2,
converges to Pp.>

ds (" (p), Pr) — 0 (n — o0).

The following proposition gives us the specific description
of the mapping 7.

Proposition 2: The mapping 7 in (4) and (5) can be
denoted as a composition of the shift mapping ¢ and a
continuous mapping ¢ : ¥ — X as follows.

T=¢ooao.

Proof: We prove the existence of such a mapping ¢
constructively. Consider a sequence p = sps1---. Let p =
5081 - - - be the closest sequence to p in &. Furthermore, let
m be larger than k and satisfy, for k+1 <i <m—1,s; = 5;,
and s,, # S,,. We define a rewriting mapping ¢ : ¥ — X
such that [-length block, that consists of [ symbols from m
th symbol in p, is inserted between m th and (m + 1) th

>The metric between two sequence p, p’ is given by ds(p,p’) :=
lsi—s]

oo 1
Zi:o 27 14[s; —s|"
3 .
2ds(p, Pr) := min dx(p,§).
s(p, P1) (i = (p; &)




symbols in p. That is, we define ¢ as follows.

l-length block L

P =5051"""SkSk+1"""Sm—-1 Sm Sm+41°" Sml-1""",
—_—
I N
—
P =S5051"" SkSk+1 """ Sm—1 Sm Sm+1-"" -

T ¢ inserts the I-length block L

Therefore, the image of p by ¢ is

¢(P) = 5081 Skngrl e §m71§m§m+1 e ngrlfl Tt

Then, the composition of ¢ and o gives the time evolution
as (5). Furthermore, for all € > 0, if dx(p, p) < €, then we
have ds(¢(p), #(p)) < e. Therefore, the continuity of the
mapping ¢ is proven. [ ]

B. Control law in the state space

In the sequence space X, to rewrite a sequence means to
control the time evolution of the sequence. Now, we design
a control law in the state space X to realize the closed-loop
system (4) in 3. We define a new mapping f, instead of f
in (1), corresponding to the mapping = as Fig. 2.

¥ — X
-] ; jut
X — X

Fig. 2. A mapping f in X corresponding to 7 in X

The closed-loop system in the state space is induced from
7 as follows.

Tnt1 = f(zn) + ulzn), (©)
where

u@) = f(x) - (@) ™

flz) = (¥ omoW)(x). ®)
The input w, = wu(zy,) is the function of the state x,

therefore, system (6) is a state feed-back system (Fig. 3).
The design parameter k, which specifies the position of the
modification of symbols, dominates the magnitude of the
inputs in the sense that the magnitude of the inputs can be
smaller by choosing larger k. Also, the design parameter [,
which is the length of the modified symbols, dominates the
convergence rate of 7™ (p) (see the next section).

IV. AN ESTIMATION OF THE CONTROL INPUTS AND THE
STABILITY ANALYSIS

In this section, for the feedback system (6), we estimate
the magnitude of the inputs, and analyze the stability of
periodic orbits.

Tni1 = [(Tn) +un }&

¢ Lo v

The state feed-back system

Fig. 3.

A. An estimation of the control inputs

To stabilize a periodic orbit of the original system (1), the
feedback system (6) must also have the same periodic orbit.
The following proposition guarantees it.

Proposition 3: The T-periodic orbit 7 in dynamics
(X, f) is also a T-periodic orbit in the feedback systems
(6). Furthermore, u|,, = 0.

Proof: We assume that a state z,, is equal to x,, € 7.
Since ™ = o on Pr, we have (1o V)(x,) = (0 0 V)(xy).
Therefore, we get f(z,) = f(x,) and u, = u(z,) = 0.
Furthermore, since x,+1 = f(x,) + u, = f(Z,), it turns
out that £, 41 = Tp4+1 € V7. ]

Furthermore, we have the proposition concerning the mag-
nitude of the inputs of (6).

Proposition 4: For all € > 0, there exists a K = K(¢) >
0 such that, if the design parameter k is larger or equal to
K, then we have |u,| < ¢ for all n > 0.

Proof: The sequences corresponding to f(z,) and

f(x,) are

Prt1 = \I/(fl(xn)) = Sp+15n+2 " Sn+k Sntk+1 "
1l

Pn+1 = \I/(f(mn)) = Sn+1Sn+2 " Sn+k Sn+k+1 "

respectively, that is, at least k£ symbols from the left in two
sequences agree. From the metric in X, it turns out that
ds(Pns1, pnr1) < 1/2F+L Since U~ is continuous, the
closer the distance between p,, 41 and p,1 is, the closer the
one between f(z,) and f(z,) is. Therefore, given ¢ > 0,
there exists a & such that, if ds(pnt1,pnt1) < O, then
|f(xn) — f(zn)] < e. If we choose k such that k >
log,(1/6) + 1, then ds(pn+1, pnt1) < 9, and then, we have
lun| < e. [ |

B. The stability analysis of periodic orbits

In order to analyze the stability of periodic orbits of the
feedback system (6), we define the neighborhood V; of a
sequence p in X by

‘/}(p) :{ﬁ€E|§Z:Su 2:07]-;;‘771}

For an integer j and a periodic orbit vz = {Zo, Z1, -+ , Z1},
we define a maximum radius €; of a neighborhood of 7 by

gj:= max U (p) — Znl,

su
0<n<T—-1 b

PEV;(Pn)



where p, = U(Z,). We have the following Lemma.
Lemma 1: For all integer j, ¢; exists. If j* > j, then
¢;» < ;. Furthermore, we have lim ¢; = 0.

J—00

For the feedback system (6), we can prove the following
proposition.

Proposition 5: Let | > 2. Then, ~r is globally asymptot-
ically stable.

Proof: From Proposition 3, it is proven that yp is a

periodic orbit in the feedback system (6).

For given € > 0 and k > 0, let § = min{e, 1/2¥*1}. For
p = 8051 € P, if p = SpS1--- satisfies dz(p,ﬁ) < 0,
then we have

si:§i,i§n,

where n is the largest integer less than or equal to
max{log,(1/¢) — 1,k}. Since some symbols in 7(p) and
m(p) agree as follows,

W(p):5152"'§n§n+1"'§*5*+1"'
———— — —

Il Il
N —N——
77(/’):5182---8,,78,,7+1---S*S*H... ,
T 1

n-length  more than [-length

it turns out

ds(m(p), 7(p)) < ds(p, p) < 4.

Therefore, we have
ds (7" (p), 7" (p)) <d <&, n>0.

Note that, for a sequence p, if a periodic sequence p; is
the closest to p in Pp, then 7(p;) is the closest to 7(p) in
w(Pr). Therefore, it turns out that, if dx(p, Pr) < J, then
ds (7™ (p), Pr) < € for all n > 0.

By the continuity of U1 we prove that, for all
A > 0, there exists a ¢ = g(A\) > 0 such that, if
ds (7" (¥(x)), Pr) < e, then d(¥~ N 7" (¥(x))),vr) =
d(f™(x),~yr) < A. Similarly, by the continuity of ¥, it turns
out that, for all § > 0, there exists a v = v(J) > 0 such
that, if d(z,yr) < v, then ds(¥(x), Pr) < §. Therefore,
one concludes that, for all A > 0, there~exists a v > 0 such
that, if d(x,vyr) < v, then we have d(f"(x),yr) < A. The
stability of yp is proven.

The global asymptotic stability is proven as follows. For
an arbitrary initial state ¢, the sequence at time n(> k),
7™ (U(x0)), has k + n(l — 1) (=: j,) symbols from the
left being equal to those of a periodic sequence in .
Therefore, a state z,, satisfies that d(x,,yr) < €j,. Since

lim j, = oo, we have lim ¢;, = 0. Therefore, it turns
n—oo n—oo

out that, for an arbitrary initial state zo € X, we have
lim d(x,,yr) = 0. |
n—oo

Remark 2: We notice that, if | = 1, the asymptotic
stability cannot be guaranteed. Furthermore, we conclude
that the distance between x,, and 7 converges to 0 more
rapidly by choosing larger [.

V. CONTROL OF A POPULATION MODEL IN AN
ECOSYSTEM

One of the simplest systems an ecologist can study is
seasonally breeding populations in which generations do not
overlap[13]. For example, many natural populations such as
temperate zone insects are of this kind. Such a relationship is
expressed by a discrete-time system x,,+1 = f(x,,) (variable
x, is the magnitude of the population). There are other
examples expressed in this form, as, for example, in biology
the theory of genetics and epidemiology. In economics the
models for the relationship between commodity quantity and
price and for the theory of business cycles. In sociology, the
theory of learning and the propagation of rumors in variously
structured societies are described by this kind of equation.
In many of these contexts, and for biological populations in
particular, there is a tendency for the variable x,, to increase
from one generation to the next when it is small, and for it
to decrease when it is large. The discrete-time system below
is a model representing such a tendency.

Tn+1 = Tmn(l - xn)7 Tp € [0; 1] (9)

This system is called Logistic map, and known to show
chaotic behavior by choosing parameter r suitably. In par-
ticular, when r = 4, the system generates chaos[14], and
the closed interval [0,1] is an invariant set. Furthermore,
divide the interval [0, 1] into two regions with the boundary
value 1/2 and give symbols ”0” and ”1” to the regions,
respectively. That is, denote these regions as Xy = [0,1/2),
X1 = [1/2,1]. Then, symbolic dynamics (X,0) can be
introduced into the system (9) with r = 4.

A. Control of the logistic map

Now, by adding or removing individuals in (9), we try
to fluctuate the population of the individuals periodically. In
particular, it is intended that the magnitude of the population
always returns to the initial magnitude every 3 generations.
For such a purpose, we give a 3-periodic sequence repeating
70117 as a target orbit and design a control system by
using the proposed method. The simulation results are shown
below. Fig. 4 illustrates the time evolution of the state
starting at the initial condition zyp = 0.3 with no control.
That is, a chaotic behavior can be observed. Fig. 5 and
Fig. 6 show the time evolutions of the states starting at the
same initial condition x¢y = 0.3 with the design parameters
(k,1) = (1,2), (10,2), respectively. Also the state values
(the magnitude of the population) are plotted in the top
figures and the input values are plotted in the bottom figures,
respectively. From Fig. 5 and 6, it is confirmed that the states
converge to the 3-periodic orbit. Furthermore, by comparing
Fig. 5 and 6, it can be verified that the system with the input
magnitude parameter £ = 10 has smaller input values than
those of the system with k = 1.

B. Comparison with the OGY-method

Fig. 7 illustrates a simulation result of stabilization of the
3-periodic orbit by applying the OGY-method[1]. The control
inputs are added so that trajectories transit onto a local stable
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Fig. 4. Time evolution of the state without control input; initial
condition o = 0.3
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Fig. 5. Stabilization of a 3-periodic orbit embedded in a Logistic
map; initial condition zo = 0.3; design parameter k = 1, [ = 2

manifold, only when the state enters in a neighborhood of
the 3-periodic orbit with a radius 0.001. It can be verified
that it takes longer time to stabilize the 3-periodic orbit than
the proposed control method.

C. A simulation of the feedback system with noise

For the logistic map (9), we consider a feedback system
with white Gaussian noise {v,} as follows.

Tnt1 = f(xn) +u(zn) + vp. (10)

We set the mean and the standard deviation of noise {v,,}
to 0 and 104, respectively, and simulate (10) in the case
when (i) £ =5, [ = 2 and (ii) £ = 10, [ = 2. Fig. 8 shows
the time evolutions of the states in these cases. From Fig. §,
it turns out that, the 3-periodic orbit is stabilized in the case
(i), but it is not done in the case (ii). One concludes that, if
the design parameter k is not sufficiently small, that is, the
upper limit of the inputs is not sufficiently large, to remove
the effect of the noise, then periodic orbits in (6) cannot be
stabilized.

VI. CONCLUSION

In this report, for a class of discrete-time systems that are
topologically conjugate to symbolic dynamics, we proposed
a control method to stabilize periodic orbits. We also showed
an application example of the proposed control method for
the population dynamics represented by a Logistic map.
This is the first attempt to systematically design control
systems by using symbolic dynamics. The proposed control
method can stabilize any periodic orbits with arbitrarily
small inputs for a class of systems, and can ensure the
robustness against noise by choosing the design parameter

input u,
&h o

0 10 20 30 40 50

time step n

Fig. 6. Stabilization of a 3-periodic orbit embedded in a Logistic
map; initial condition zo = 0.3; design parameter k = 10, | = 2

0.5

input
NS

-4t I L 1 1 E|
0 10 20 30 40 50

time step n

Fig. 7. Stabilization of a 3-periodic orbit embedded in Logistic
map with the OGY-method; initial condition xo = 0.3

suitably. It is difficult, with the conventional state space
approaches, to accomplish the stabilization like this, showing
the effectiveness of the use of symbolic dynamics.
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