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Abstract
In the present paper we investigate the Hamiltonian-

based optimization algorithms for inherently discrete
processes, i.e. those in which state changes at the pro-
cess stage are finite and may be large. Their mathe-
matical models (difference equations) refer either for
processes which are discrete by nature or are obtained
from continuous (differential) models by suitable dis-
cretization. We show that, when discrete time inter-
vals are linear in the discrete model, the optimal dis-
crete process is described by a Hamiltonian of Pon-
tryagin’s type which is constant along the discrete path.
However, for models with nonlinear time intervals, the
constancy of the optimal discrete Hamiltonian is lost
and, instead, an extra difference equation constitutes a
model component describing the change of the Hamil-
tonian. Selected applications of the obtained algo-
rithms in evaporation and drying operations are pre-
sented, which involve models with linear and nonlinear
time intervals.
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1 Introduction
One of the key reasons for the development of process

modeling is the necessity to optimize the processes al-
ready in the design. The development of mathemati-
cal models of processes and the increase of their com-
plexity requires a development of the method and al-
gorithms for optimization, because optimization algo-
rithms applied to simple models cannot be used in case
of more complex models. In the case of multistage or
continuous processes, one of the most effective opti-
mization methods are algorithms of Maximum Princi-
ple.

The first continuous version of optimization algorithm
of Maximum Principle was formulated by Pontryagin
and co-workers in 1956. Next, Gamkrelidze, Boltyan-
ski and Rozonoer [Pontryagin et al., 1962], and, inde-
pendently, Fan [Fan, 1966], have given some modifica-
tions, generalizations and proofs of the continuous al-
gorithm. The first discrete algorithm of the Maximum
Principle type was presented in 1960 by Katz [Fan
and Wang, 1964] and Fan [Boltyanski, 1973]. How-
ever, the algorithms of Katz’s and Fan’s have a com-
pletely different structure than Pontryagin’s continuous
algorithm. In 1972, by using the method of dynamic
programming Sieniutycz [Sieniutycz, 1974] revealed a
constant Hamiltonian algorithm for discrete processes
described by an optimization model linear with respect
to one arbitrary decision, which is essentially a finite
time interval, replacing an infinitesimal, differential in-
terval in Pontryagin’s algorithm. This paper shows
that a new discrete algorithm can be derived resem-
bling the continuous version of Pontriagin’s principle.
Similarly like in Pontriagin’s algorithm, in Sieniutycz’s
algorithm the Hamiltonian maintains a constant value
along an optimal trajectory. In further studies Kafarow,
Polak, Zangwill and Szwast obtained a weak version
of the discrete algorithm with constant Hamiltonian
(Weak Maximum Principle) by using the method of
Lagrange’s multipliers [Szwast, 1994], [Szwast, 1979].
Next, studies carried out by Szwast conducted to derive
an enhanced version of this algorithm (Strong Maxi-
mum Principle) [Szwast, 1988]).
The classical version of the discrete algorithm with

constant Hamiltonian is limited by a requirement of
linearity of the optimization model with the respect of
one distinguished decision variable – “finite interval
of time”. This requirement is satisfied by many mod-
els describing many processes of chemical engineering,
but not by all. Obviously Katz’ and Fan’s algorithms
can be used, but the discrete algorithm with a constant
Hamiltonian has some advantages in comparison with
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Katz’ and Fan’s algorithms. One of these advantages
is the fact that a physical meaning can be attributed
to Hamiltonian and adjoint variables in the algorithm
with constant Hamiltonian whereas this is impossible
for Katz’ and Fan’s algorithm. The advantage is espe-
cially apparent if solving of an optimization problem
demands an iterative method (some values of adjoint
variables and Hamiltonian must be assumed). Hence
the idea arises to generalize the classical version of the
discrete algorithm with constant Hamiltonian, so that
it could be used to optimize linear and nonlinear prob-
lems.
The generalized version of the discrete algorithm with

a constant Hamiltonian is presented in this paper.

2 Classical Version of the Discrete Algorithm with
Constant Hamiltonian

The scheme of considered multistage processes is pre-
sented in Figure 1, where xn, un and zn are vectors
of state variables, decision variables and adjoint vari-
ables respectively; θn is “the time interval”, a decision
variable with respect of which the process model is lin-
ear by assumption, and tn is an additive time-like state
variable referred to “the time”. While tn may represent
the reagents residence time or the process chronologi-
cal time it may also be a measure of these quantities.
The variables θn and tn satisfy the following relation:

θn = tn − tn−1 (1)

Figure 1. Scheme of considered multistage processes

Discrete algorithm with constant Hamiltonian can be
used to resolve an optimization problem for which the
optimization model is linear with the respect of θn.
Linearity of the optimization model requires both state
equations (transformations) and performance index to
be linear with the respect of this variable.
The considered performance index takes a following

Lagrange’s form (other forms of performance index
can be found in literature, e. g. [Fan, 1966], [Fan and
Wang, 1964], [Boltyanski, 1973]):

I =
N∑

n=1

f0 (x
n,un, tn) θn (2)

The state equations (called also state transformations)
are derived from equations of mathematical model of
process. For each state variable, a state equation de-
scribes a change of this variable value through the n-th
stage of cascade. General form of the state transfor-
mations takes a following form, which is right for all
cascade stage (n = 1..N ) and for all state variables
(i = 1..s; where s is a number of state variables):

xn
i − xn−1

i = fn
i (xn,un, tn) θn (3)

The function fi appearing in the equation (3) can be
a function of time, tn, but in any case, it can’t be a
function of time-interval, θn.
The Hamiltonian (Hamilton’s function) is defined in

following form:

Hn−1 (xn,un, zn, tn) = fn
0 (xn,un, tn)+

+

s∑
i=1

zn−1
i fn

i (xn,un, tn) (4)

where zn−1
i are a component of adjoint vector, zn−1

for n = 1..N and i = 1..s.
Necessary conditions for optimality of performance

index (2) are described by canonical set of equations
(5) and (6), equation (7), which describes a weak con-
dition of optimality with respect to decisions variables,
un, and equation (8) describing changes of the Hamil-
tonian along an optimal trajectory. Equation (8) is, in
fact, a condition of optimality for decision θn. These
equations are valid for all stages of the cascade, n =
1..N , for all state and adjoint variables, i = 1..s, and
for all decisions being a component of the vector un,
j = 1..r, where r is the number of decision variables
excluding θn.

∂Hn−1 (xn,un, zn, tn)

∂zn−1
i

=
xn
i − xn−1

i

θn
=

= fn
i (xn,un, tn) = (5)

−∂Hn−1 (xn,un, zn, tn)

∂xn
i

=
zni − zn−1

i

θn
(6)

∂Hn−1 (xn,un, zn, tn)

∂un
j

= 0 (7)

Hn −Hn−1

θn
=

∂Hn−1 (xn,un, zn, tn)

∂tn
(8)
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The Hamiltonian (4) is valid both for the autonomous
processes and for non autonomous processes. For the
autonomous processes Hamiltonian (2) in not explicit
function of time tn, whereas for non autonomous ones
time tn is an explicit argument of the Hamiltonian. In
agreement with equation (8) the Hamiltonian is con-
stant along an optimal trajectory of an autonomous pro-
cess.
Although the equations presented above are sufficient

to solve all problems defined by performance index (2)
and state equations (1) and (3), an enlarged Hamilto-
nian is often introduced. The enlarged Hamiltonian is
always constant and, moreover, it always equal to 0.
The enlarged Hamiltonian takes a following form

H̃n−1
(
xn,un, zn, tn, zn−1

t

)
=

= Hn−1 (xn,un, zn, tn) + zn−1
t (9)

where zn−1
t is a adjoint variable connected with the

time, tn.
The optimality condition presented by equations (5)–

(7) can be redefined using the enlarged Hamiltonian. In
redefined equations the traditional Hamiltonian (of en-
ergy type) is substituted by the enlarged Hamiltonian:

∂H̃n−1
(
xn,un, zn, tn, zn−1

t

)
∂zn−1

i

=

=
xn
i − xn−1

i

θn
= fn

i (xn,un, tn) (10)

−
∂H̃n−1

(
xn,un, zn, tn, zn−1

t

)
∂xn

i

=
zni − zn−1

i

θn

(11)

∂H̃n−1
(
xn,un, zn, tn, zn−1

t

)
∂un

j

= 0 (12)

Equation (8), describing changes of the traditional
Hamiltonian along an optimal trajectory, is replaced by
the following equation

znt − zn−1
t

θn
= −

∂H̃n−1
(
xn,un, zn, tn, zn−1

t

)
∂xn

i
(13)

which describing changes of adjoint variable, zn−1
t .

Because the adjoint variable zn−1
t is an additional

variable, which doesn’t appear in equations (5) – (8),
the set of equations (10) – (13) must be completed by a
new equation. The additional equation results form fact
that the enlarged Hamiltonian is always equal to zero,
so the additional equation takes the following form:

H̃n−1
(
xn,un, zn, tn, zn−1

t

)
= fn

0 (xn,un, tn)+

+

s∑
i=1

zn−1
i fn

i (xn,un, tn) + zn−1
t = 0 (14)

2.1 Boundary Conditions
To solve the discrete optimization problem considered

above, some boundary conditions for state and adjoint
variables are needed. In the simplest (but most often
used) form of boundary conditions some initial and fi-
nal values of state variables are determined. For typical
problems all the initial values of state variables are usu-
ally known, whereas some final values can be known
and some ones can be undetermined. Analogically, the
initial value of time, tn, is usually accepted as equal to
zero ( t0 = 0 ), whereas the final value can be fixed or
free.
The form of the boundary conditions for adjoint vari-

ables comes from the form of performance index and
conditions for state variables. Therefore, for the perfor-
mance index described by the Lagrange form, equation
(2), the following holds: if the value of the state vari-
able is undetermined then right adjoint variable is equal
zero, whereas if the value of the state variable is fixed
then the value of related adjoint variable is free. Simi-
larly if the time, tn, is free, then the Hamiltonian Hn is
equal to zero, whereas if the time, tn, is fixed then the
Hamiltonian is undetermined. In the case when the en-
larged Hamiltonian is used, conditions presented above
take the following form: if the time is free the variable
adjoint with the time, zn−1

t , equals zero, whereas if the
time is fixed the adjoint variable is undetermined.
Above conditions can be summarized in the following

form:

xn
i − fixed ⇒ zni − undetermined
tn − fixed ⇒ Hn or znt − undtermined

xn
i − undetermined ⇒ zni = 0 (15)
tn − undetermined ⇒ Hn = 0 or znt = 0

One should underline that the boundary conditions
discussed above are valid for the performance index
given by equation (2) (Lagrange’s form). The bound-
ary conditions for other forms of the performance index
and for more complicated conditions for initial and fi-
nal state variables can be found in the literature [Fan,
1966; Fan and Wang, 1964; Boltyanski, 1973].

3 Generalized Version of the Discrete Algorithm
with Constant Hamiltonian

The classical version of the discrete algorithm with
constant Hamiltonian is limited by the requirement of
the linearity of the process optimization model, includ-
ing all state equations and performance index, with the
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respect to a distinguished decision variable. This re-
quirement is satisfied by many models of engineering
processes, but not by all. Obviously, Katz’ and Fan’s
algorithms can be used, but the discrete algorithm with
constant Hamiltonian has some advantages in compar-
ison with Katz’ and Fan’s algorithm. One of these ad-
vantages is the fact that a physical meaning can be at-
tributed to Hamiltonian and adjoint variables in the al-
gorithm with the constant Hamiltonian whereas similar
interpretations are quite limited for Katz’ and Fan’s al-
gorithms. This advantage is especially apparent for an
optimization problem wherein a solving procedure de-
mands to use an iterative method in which some values
of adjoint variables and Hamiltonian must be assumed.
Therefore, the natural idea emerges to generalize the
classical version of the discrete algorithm with constant
Hamiltonian, so as it could be used for nonlinear opti-
mization problem. By the nonlinear problem we mean
here the one in which one cannot find any control vari-
able with respect to which all equations of optimization
model are linear. In brief, this means that variables θn

may appear nonlinearly in the process model.
We recall that the equations presented above are lin-

ear with respect to decision θn. This is too restrictive
for some models of heat and chemical cascades, and
for computational difference models obtained by the
discretization of continuous (differential) equations.
Therefore a generalized version of the discrete Hamil-
tonian algorithm is derived below by using the method
of Lagrange’s multipliers. As mentioned above, the
generalized version does not require all equations of
the optimization model (for the performance index and
state transformations) to be linear with respect of a se-
lected decision variable. A derivation of the general-
ized version is presented below.
In the derivation presented below we concentrate on

some differences between classical and generalized
version of the discrete algorithm with constant Hamil-
tonian, whereas some considerations about features
common for both versions are omitted. This omission
mainly concerns boundary conditions, which are the
same for both versions, so the equations of the bound-
ary conditions for the state variables and the (derivation
of) boundary conditions for the adjoint variables are not
taken into consideration. The broadened information
concerning the problem of the derivation of boundary
conditions can be found in the literature [Fan, 1966],
[Fan and Wang, 1964], [Boltyanski, 1973].
The considered performance index for the generalized

version of discrete algorithm with constant Hamilto-
nian takes a following general form:

I =

N∑
n=1

fn
0 (xn,un, tn, θn) θn (16)

While the performance index (16) is quite similar to
the performance index described by equation (2), one
should note that the profit rate function fn

0 can explic-

itly contain the variable θn. This shows a significant
difference between both performance indices (equa-
tions (2) and (16)) because the profit rate in the clas-
sical version of the algorithm cannot be a function of
θn.
State equations for n = 1, ..N and i = 1, ..s take a

general form

xn
i − xn−1

i = fn
i (xn,un, tn, θn) θn (17)

Analogously to the performance index, also rates in
state equations fn

i contain explicitly the decision vari-
able θn, in contrary to the functions fn

i of classical ver-
sion, which cannot contain the control θn as an explicit
argument. The state equation (1) for the state variable
tn remains valid for both versions of the algorithm.
For the optimization problem defined by equations

(16) and (17), the Lagrange function takes the follow-
ing form:

L
(
x1
1..x

N
s , u1

1..u
N
r , t1..tN , θ1..θN , λ0

1..λ
N
s , λ0

t ..λ
N
t

)
=

=
N∑

n=1

fn
0 θ

n +
N∑

n=1

s∑
i=1

λn−1
i

(
fn
i θ

n − xn
i + xn−1

i

)
+

(18)

+
N∑

n=1

λn−1
t

(
θn − tn + tn−1

)
+

l∑
i=1

λN
i

(
ci − xN

i

)
+

+λN
t

(
tk − tN

)
where λn−1

i and λn−1
t are Lagrange multipliers, ci are

the fixed final values of state variables, whereas l is a
number of fixed final values of state variables, and tk is
a fixed final value of time. As mentioned above, all ini-
tial values of state variables are usually fixed, therefore
they are not arguments of the Lagrange function.
Substituting the enlarged Hamiltonian defined in the

following form

H̃ (xn,un, tn, θn,λn, λn
t ) =

= fn
0 +

s∑
i=1

λn−1
i fn

i + λn
t (19)

into equation (18) we obtain the following new form of
the Lagrange function:

L (.....) =
N∑

n=1

H̃ (xn,un, tn, θn,λn, λn
t ) θ

n+

+
N∑

n=1

s∑
i=1

λn−1
i

(
−xn

i + xn−1
i

)
+ (20)

+
N∑

n=1

λn−1
t

(
−tn + tn−1

)
+

l∑
i=1

λN
i

(
ci − xN

i

)
+

+λN
t

(
tk − tN

)
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The necessary condition for an extremum of the per-
formance index (16) requires that the partial derivatives
of Lagrange function (20) with respect to all state vari-
ables, all decisions and all Lagrange multipliers must
be equal to zero.
The derivatives of equation (20) for all components

of vector λn−1 and for λn−1
t ( n = 1...N ) take the

following forms

∂L (...)

∂λn−1
i

=
∂H̃n−1

∂λn−1
i

θn − xn
i + xn−1

i = 0 (21)

∂L (...)

∂λn−1
t

=
∂H̃n−1

∂λn−1
t

θn − tn + tn−1 = 0 (22)

where the symbol L (...) signifies a short notation of
the Lagrange function with its all arguments. From the
derivatives of L with respect to the multipliers with the
superscript N , λN

i and λN
t , conditions for final values

of state variables are obtained:

ci − xN
i = 0

tk − tN = 0 (23)

Next, after deriving all suitable derivatives of L with
respect to all components of state vector xn (n = 1...N
) and time tn we obtain the following equations:

∂L (...)

∂xn
i

=
∂H̃n−1

∂xn
i

θn + λn
i − λn−1

i = 0 (24)

∂L (...)

∂tn
=

∂H̃n−1

∂tn
θn + λn

t − λn−1
t = 0 (25)

The weak optimality condition for the decision vari-
ables - the components of vector un takes a following
form

∂L (...)

∂un
j

=
∂H̃n−1

∂un
j

θn = 0 (26)

whereas the optimality condition for the decision vari-
able θn is found as:

∂L (...)

∂θn
=

∂H̃n−1

∂θn
θn + H̃n−1 = 0 (27)

In algorithms of Maximum Principle the Lagrange’s
multipliers are substituted by the adjoint variables. For
the optimization problem defined above by equations

(1) – (3) the adjoint variables are equal to the La-
grange’s multipliers. Replacing the Lagrange multipli-
ers by the adjoint variables, the generalized Hamilto-
nian, equation (19), can be rewritten to the form:

H̃n−1 = fn
0 +

s∑
i=1

zn−1
i fn

i + zn−1
t = 0 (28)

With adjoint variables taken in place of Lagrange
multipliers, equations (21), (22) and (24) (27) can be
rewritten to the following form:

∂H̃n−1

∂zn−1
i

=
xn
i − xn−1

i

θn
(29)

−∂H̃n−1

∂xn
i

=
zni − zn−1

i

θn
(30)

−∂H̃n−1

∂tn
=

znt − zn−1
t

θn
(31)

∂H̃n−1

∂un
j

= 0 (32)

∂H̃n−1

∂θn
+

H̃n−1

θn
= 0 (33)

Equations (29)–(30) are quite similar to those describ-
ing the classical version of the discrete algorithm with
a constant Hamiltonian. The only difference, equation
(33), is caused by the generalized property of enlarged
Hamiltonian, which is an explicit function of time in-
tervals θn. As we already know, in the classical version
of the algorithm, control variables θn cannot be an ex-
plicit argument of the Hamiltonian.
Equation (33) is not present in the traditional structure

of the constant Hamiltonian algorithm. Yet, this equa-
tion appears in the generalized algorithm (28)-(33) in
place of equation (14) which is limited to the traditional
version (and which states that the optimal enlarged
Hamiltonian is always equal to zero). One should eas-
ily note that if the Hamiltonian is not an explicit func-
tion of control variable θn then equation (33) reduces
to equation (14). So, we may conclude that the discrete
constant-Hamiltonian algorithm is a particular, discrete
counterpart of the continuous algorithm of Maximum
Principle.
Boundary conditions for adjoint variables connected

with all state variables and time are the same for both
versions of the discrete algorithm.
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4 Course of Calculations
In the typical problems initial values of all state vari-

ables are usually known, while final ones are known
only for some state variables whereas the others are un-
determined. Such a case is described below but the cal-
culation procedure is the same if the some initial values
are undetermined. Only conditions for the termination
of calculation are different.
Final values of adjoint variables result from bound-

ary conditions. Thus the values of adjoint variables
are undetermined if the values of corresponding state
variables are known, and the adjoint variables are
equal zero if the corresponding state variables are free.
Therefore in the first step of calculation procedure un-
known values of state and adjoint variables must be as-
sumed.
The optimization calculation can be accomplished by

the following procedure:
1. Unknown final values of state and adjoint variable

are assumed.
2. For the last stage of cascade (n = N ) the set

of equations (29) (33) is solved; All values of state
and adjoint variables before the last stage, xN−1 and
zN−1, are obtained along with values of decision vari-
ables, uN and θN , moreover the values of tN−1 and
are found.
3. Next, n is decreased by taking successively values
N−1, N−2, ... 2, 1, and the set of equations (29) (33)
is solved again for all values of n; all values of state and
adjoint variables before the stage n, xn−1 and zn−1 as
well the values of decision variables at this stage, un

and θn are obtained. For each stage the values of tn−1

and zn−1
t are obtained.

4. After solving the set of equations for n = 1 the val-
ues of state and adjoint variables before of cascade, x0,
z0, t0 and z0t are calculated. The procedure is termi-
nated if the calculated values of state and adjoint vari-
ables are equal to the fixed values of these variables;
if not, new values of final unknown variables must be
assumed in the first step.
Termination of above optimization procedure follows

if the fixed values of state and adjoint are achieved by
calculated values of these variables. In the case when
all initial values of state variables are fixed all values
of adjoint variables are free, so only fixed and calcu-
lated values of state variables are compared. In the case
when some initial values of state variables are know
and some are undetermined, calculated values of state
variables are compared with the fixed ones, whereas
calculated adjoint variables connected with state vari-
ables, which are undetermined, must be equal to zero.

5 Example of Application
Applications of optimal control can be discussed for a

number of unit processes including transport phenom-
ena, separation systems, and energy systems. The po-
tential application of the optimization algorithm pre-
sented above and some examples for all these sys-

tems was reported on Sieniutycz [Sieniutycz, 2006].
Whereas the below example concerns the problem of
maximizing profit in a cascade of chemical reactors
with ideal mixing.

5.1 Profit Maximization for Chemical Reaction
The performance index accepted in our consideration

describes a profit obtained from sale of reaction product
and reduced by cost of reactors. The obtained profit is
proportional to final concentration of product, whereas
the cost of reactor is proportional to the reactor volume
involution m, so the performance index takes a form

I =
N∑

n=1

cR
(
xn − xn−1

)
− bR

τu
(V n

R )
m (34)

where cR is a price of reaction product, bR and m are
a coefficients in the reactor cost equation and τu is an
utilization time. The first-order reversible catalytic re-
action proceeding in cascade of ideally mixed reactors
is considered in this paper. The increase of reaction
product on the stage n is given by following form

xn − xn−1 = [k1a (t
n) (1− xn)− k2a (t

n)xn] θn

(35)
where x is a product concentration; k1 and k2 are the
reaction-rate constants; θn is a holdup time on the stage
n; a(tn) is a catalyst activity factor and it is a function
of a state variable called a time, tn. The catalyst activ-
ity decreases during the reaction and it is described by
following expression:

a = a0e
−kt (36)

The equation (34) describing a performance index
can’t be directly used in optimization algorithm, so
above equation must be transformed to the following
form

I =
N∑

n=1

[
k1a (t

n) (1− xn)+
−k2a (t

n)xn − β (θn)
m

]
θn (37)

where coefficient β is defined by expression:

β =
bRq

τucR
(38)

In accordance with optimization algorithm presented
above the Hamiltonian for stage n takes a following
form

H̃ =
(
1 + zn−1

)
[k1a (t

n) (1− xn)− k2a (t
n)xn] +

−β (θn)
m−1

+ zn−1
t (39)
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The conditions for optimality of decision variables,
temperature and holdup time, are described by follow-
ing equations, respectively:

∂H̃n−1

∂Tn
=

=
(
1 + zn−1

) [k1a (tn) (1− xn) E1

R(Tn)2
+

−k2a (t
n)xn E2

R(Tn)2

]
= 0

(40)

H̃n−1 + θn
∂H̃n−1

∂θn
=(

1 + zn−1
)
[k1a (t

n) (1− xn)− k2a (t
n)xn] +

−β (θn)
m−1 − β (m− 1) (θn)

m−1
+ zn−1

t = 0
(41)

The equation (40) allow us to determine the optimal
temperature, which depends only on the current degree
of conversion xn at each stage.

Tn =
E2 − E1

R ln
(

k20E2

k10E1

xn

1−xn

) (42)

The adjoint equations describing changes of adjoint
variables on the stage n take a following forms:

∂H̃n−1

∂xn
= −zn − zn−1

θn
=

=
(
1 + zn−1

)
[−k1a− k2a] = 0 (43)

∂H̃n−1

∂tn
= −znt − zn−1

t

θn
=

= −
(
1 + zn−1

)
[−k1 (1− xn)− k2x

n] a0ke
−ktn = 0

(44)

Because final values of reaction product concentra-
tion, xN , and the time, tN , are free the final values of
right adjoint variables are equal zero (zN and zNt ). At
the beginning of calculations the final values of state
variables xN and tN have to be assumed, next the set
of equations (34-44) from the last stage to the first stage
must be resolved and finally one ought to compare cal-
culated initial values of state variables (x0 and t0) with
required ones. If calculated values are right the calcu-
lation are finished, if not the new final values of state
variables must be assumed.

6 Summary
The paper presents two versions of the Hamiltonian

optimization algorithm for discrete systems: the tradi-
tional version and a generalized version. Traditional

version of the discrete Hamiltonian algorithm, rela-
tively unknown in the literature, requires the optimiza-
tion model (performance index and state transforma-
tions) to be linear with the respect of one, distinguished
control variable, usually the time interval. This require-
ment is a considerable restriction for using this algo-
rithm. Still, there is a clear advantage of the algorithm,
namely, the well defined meaning of adjoint variables,
which are the same as in continuous systems (Pontrya-
gin’s adjoints, identical with the Lagrange multipliers
of the state equations). This possibility doesn’t occur in
other discrete algorithm (Katz’ and Fan’s algorithm). It
was thus reasonable to develop a new optimization al-
gorithm which, while still preserving Pontryagin’s def-
inition of state adjoints, could be used to optimize dis-
crete models nonlinear in time intervals. In this paper,
we have used the method of Lagrange’s multipliers to
derive such a generalized version of discrete algorithm
with constant Hamiltonian for the Lagrange form of
performance index. This new version of the discrete
algorithm can be used to solve both linear and nonlin-
ear optimization problems.
The use of the generalized version is exemplified by

optimizing a chemical reaction problem in Section 5.
In this problem the state transformations are linear with
respect to the holdup time, but the performance index
is linear for the exponent m = 1 and nonlinear for the
exponent m ̸= 1. Therefore classical version of dis-
crete algorithm with constant Hamiltonian could not be
used, but the generalized one could be applied for both
non and linear problems. Other examples of optimiza-
tion solutions are obtained for difficult (heterogeneous)
models of fluidization, with bubling and other imper-
fections [Poswiata, 2003)], [Poswiata, 2004].
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