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Abstract
In the paper the problem of multiple controlled syn-

chronization of a pair of unbalanced rotors is consid-
ered. A new bidirectional control law is proposed for
multiple synchronization of rotors. A linear analysis
of the dynamics of a simplified system model is pre-
sented, demonstrating the control system robustness
with respect to the parameters of the vibration machine
and controller. The main part of the paper is devoted
to the description of the experimental results obtained
at the Multiresonance Mechatronic Laboratory Setup,
demonstrating the efficiency of the proposed approach
and revealing its application scope.
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1 Introduction
In the development of vibratory machines that per-

form screening, crushing, vibration transportation of
bulk materials, the increase in productivity is largely
associated with the solution of the problem of en-
suring a stable synchronous mode. The present pa-
per is devoted to the problem of multiple controlled
synchronization of a pair of unbalanced rotors. A
new law of bidirectional control is proposed for mul-
tiple synchronization of rotors. A linear analysis
of the dynamics of a simplified system is presented,
demonstrating the robustness of the control system
with respect to the parameters of the vibration ma-
chine and the controller. The main part of the pa-
per gives a description of the experimental results
obtained at the Multi-resonance Mechatronic Labora-
tory Setup, demonstrating the efficiency of the pro-
posed approach and revealing its application area. The
foundations of the theory of synchronization of vibra-
tion machines were laid in the 1960s in the works

by I.I. Blekhman, where the basics of the theory of
mechanical vibro-exciters synchronization were estab-
lished, see (Blekhman, 1988; Blekhman et al., 1995;
Blekhman et al., 1997; Blekhman, 2000; Blekhman,
2013; Blekhman et al., 2002; Blekhman and Fradkov,
2004; Blekhman and Yaroshevich, 2004; Blekhman
and Vaisberg, 2011; Blekhman, 2012). Based on this
theory, the synchronization machinery of traditional
rigid transmission (e.g., gear transmission) and flexi-
ble transmission (e.g., chain or belt transmission) are
gradually reduced, replaced by vibration synchroniza-
tion equipment driven by two or more exciters. They
enable the vibrating system to achieve linear motion
trajectory, elliptical motion trajectory and other kinds
of nonlinear trajectories through vibrating synchroniza-
tion (Li and Chen, 2019). The application of this the-
ory made the work of synchronous machines extremely
simple, making the maintenance easy and convenient
and significantly improving the reliability of these ma-
chines. Moreover, as shown in these works, in many
cases, synchronization in vibration devices is achieved
due to the effect of self-synchronization of rotating ro-
tors. In (Kremer, 2016) the method of direct separation
of motions proposed by I.I. Blekhman was applied in a
modified form with the explicit introduction of a small
parameter. Equations for the slow motions were ob-
tained and an analysis of how they depend on the struc-
ture of the original equations was performed. As an ex-
ample, in (Kremer, 2016) is shown that high-frequency
excitation in a system with a nonlinear friction can es-
sentially increase the effective damping.
In (Li and Chen, 2019), Li and Chen analyzed the

principle of operation of an elliptical vibration screen-
ing system driven by two motors and suggested adding
a high frequency, low amplitude exciter at the end of
the discharge, reducing screen clogging and separat-
ing the granular particles of the viscous block quickly
and efficiently. Steady-state phase relationships for
double frequency synchronization of vibration are ob-
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tained and a functional relationship is given, according
to which the location and direction of rotation of the ex-
citers affect the phase difference between the actuators.
Experimental results from (Li and Chen, 2019) have
shown that synchronization of multi-frequency oscilla-
tions with three exciters can be achieved.
The phenomenon of vibration synchronization of a

two-mass oscillatory system driven by two actuators
was studied in (Liu et al., 2020). The averaging method
was used for deriving a criterion for synchronization
between two actuators as well as a criterion for the sta-
bility of an oscillatory system in synchronous states
is given. The rotation speed of the two actuators,
the phase difference between their rotation angles, re-
sponses and the difference in responses of two solids
were studied quantitatively in the subresonant and su-
perresonant states of the system, as well as on a tech-
nical example of vibration synchronization of a two-
mass vibrational system, driven by two actuators, was
presented.
In a number of cases, however, the self-

synchronization effect is not stable enough, and
can also hinder the achievement of the desired behav-
ior of the system, for example, when it is necessary
to provide specified phase shifts between the rotors
or to provide a multiple synchronization mode. In
these cases, the solution can be to use closed-loop
control for vibration machines. Let us consider some
results of this approach. A synchronization control
strategy for the multi-motor control system using
the MS (Master-Slave) communication mode, based
on the PROFIBUS-DP fieldbus (Vitturi, 2004), was
proposed by He et al. in (He et al., 2007). In order to
properly assign the given speed of each motor of the
slave station, the arithmetic neural network controller
was installed on the master station.
In (Tomchina et al., 2009; Galitskaya and Tomchina,

2012; Tomchina, 2020), a multiple synchronization al-
gorithm for a two-rotor vibration machine is proposed,
based on the integro-differentiating Speed-gradient al-
gorithms (Fradkov, 1979; Andrievsky et al., 1989;
Fradkov and Pogromsky, 1998; Fradkov et al., 1999).
It is shown that the proposed solution to the problem
of controlling the multiple synchronization of rotors of
two-rotor vibration machines affects the value of the
steady-state normalized phase shift, making it possible
to regulate the performance of the system. The results
of computer simulation are presented, which confirm
the effectiveness of the developed algorithm.
In (Jia et al., 2018), the master-slave control strategy

was employed to realize the multi-frequency synchro-
nization. To this end, the fuzzy PID method is used
to control two induction motors. The slave motor uses
the method of the phase ratio to trace the master motor
and achieve the synchronous motion. The motion trails
of the vibrating system between one and two times
and realizes the zero phase difference after each pe-

riod. The experiments are used to analyzing the fea-
ture of the movement tracks. In the experiment of the
multi-frequency controlled synchronization, the speeds
of the two motors are, respectively, set to 27 Hz and
40.5 Hz with two inverters. The PLC (Programmable
Logic Controller) was used to realize the master-slave
control strategy. The photoelectric coder and the Hall
sensor are used to measure and calculate the pulses.
In the present paper a novel bidirectional control law

for multiple synchronization of the pair of debalance
rotors is proposed. A linear analysis of the dynamics
of a simplified system is presented, demonstrating the
robustness of the control system with respect to the pa-
rameters of the vibration machine and the controller.
The main part of the paper contains description of the
experimental results obtained at the Multi-resonance
Mechatronic Laboratory Setup, demonstrating the ef-
ficiency of the proposed approach and revealing its ap-
plication area.
The reminder of the paper is organized as follows. The

Mechatronic Setup SV-2M for performing the experi-
ments is briefly described in Sec. 2. Section 3 presents
the bidirectional control law for multiple synchroniza-
tion of the debalance rotors. Linear analysis of the sim-
plified closed-loop system is given in Sec. 4. Results
of the experiments are presented in Sec. 5. Conclud-
ing remarks and the future work intentions are given in
Sec. 6.

2 Description of Experimental Mechatronic
Setup

The Multiresonance Mechatronic Laboratory Setup
(MMLS) SV-2M of the IPME RAS, described in
(Boikov et al., 2016; Fradkov et al., 2016; Andrievsky
and Boikov, 2017; Andrievsky et al., 2019; Fradkov et
al., 2021), is used for experimental investigations. For
the sake of clearness, the SV-2M is briefly described
below.
The MMLS SV-2M was developed on the basis of

many years of experience on creating vibrating stands
at the Mekhanobr Engineering JSC and the IPME RAS.
Professor I.I. Blekhman was among the initiators of the
development of the stand, he outlined the range of its
possible applications in research works on vibration
technologies, the mechanical resonance phenomena
and oscillations synchronization. I.I. Blekhman had
paid the great attention to the works performed on the
setup, actively participated in the discussion, helped in-
terpretation of experimental results and had suggested
the directions for further research, cf. (Andrievskii et
al., 2016).
The mechatronic setup SV-2M consists of the vibra-

tion stand, a pair of the induction motors with un-
balanced rotors, the electronic converter/amplifier, the
sensor assembly with the special controller for signal
processing, and the personal computer, supplied with
the devices for interface with the hardware. The AC
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Figure 1. General view of the mechatronic setup SV-2M.

motors can be independently controlled by means of
the control signals, computed by the PC and applied to
the corresponding amplifier. Unbalance of the rotors is
provided by the eccentrically located weight. The un-
balanced rotor rotates on the motor shaft in a vertical
plane on the stand base. Upon rotation of the unbal-
anced rotors around their axes, the centrifugal forces
arise, which excite vibrations in positions of the spring-
loaded main platform and the additional platform.
The general view of the setup, including the electron-

ics assembly box, the PC and the vibration stand (from
left to right) is depicted in Fig. 1. Notations on the fig-
ure: 1 – AC induction motor; 2 – drive shaft; 3 – unbal-
anced rotor; 4 – base; 5 – springs of the main platform;
6 – additional platform; 7 – springs of the additional
platform. The mechanical part of the setup is pictured
in Fig. 2 in more details. The rotors’ revolving direc-
tions are not controlled in SV-2M. The positive direc-
tion for the “left” (conventionally) motor is clockwise,
whereas for the “right” motor it is anti-clockwise.

Figure 2. Mechanical part of the mechatronic setup SV-2M.

The stand is equipped with 12 optical sensors measur-
ing positions of the main and of the extra platforms,
velocity sensors for two independently rotating rotors,
having a resolution of 4000 pulses/revolution, as well
as with the sensors of electric motor currents. Measure-
ment of the platforms positions is carried out by a set of
sensors. First of all, these are optical motion sensors,
installed in such a way that their data allow obtaining
information about the 6DoF linear and angular coordi-
nates of each platform. To this end, the DFRobot Smart
Grayscale Sensors are employed. In the SV-2M, the

analog sensor output is used, which is fed to the ana-
log I/O board PCI826 for transferring measured data
to the PC. The drive systems are independently con-
trolled from the main personal computer (PC), which
forms the governing signals ul and ur setting the drive
rotation speed of the “left” and “right” drive system
(respectively). These signals are applied to Altivar 12
Schneider Electric converters over the 16-bit DAC in
the form of the DC voltages, which lie the interval
[0, 5] V. The converters have their local feedback, used
in the “U/f = const” controlling mode. The PC out-
puts are integers from the range [0, 216−1]. Therefore,
the dimensionless control signals, formed by the PC,
are non-negative and are limited by ū = 65535.
Real-time data processing and control are carried

out by means of Simulink Desktop Real-Time™ of
MATLAB© R2015b software. Control signal compu-
tation can be performed with a sampling rate up to
1000 Hz.

3 Bidirectional Control Law for Multiple Syn-
chronization of Debalance Rotors

In (Andrievsky et al., 2019; Fradkov et al., 2021)
the problem of controlled synchronization for unbal-
anced rotors phase shift is considered. The rotation
frequency band is conditionally partitioned into the fol-
lowing ranges:

1. ultra-low frequencies: 0 6 ω < 30 rad/s;
2. low frequencies: 30 6 ω < 50 rad/s;
3. medium frequencies: 50 6 ω < 70 rad/s;
4. high frequencies: 70 6 ω < 100 rad/s;
5. superior frequencies: ω > 100 rad/s.

At frequency ω ≈ 125 rad/s the Sommerfeld effect
(Sommerfeld, 1902; Blekhman, 1988; Dimentberg et
al., 1997; Blekhman and Fradkov, 2004; Kovriguine,
2012; Cvetićanin and Zukovic, 2015) manifests itself;
the frequencies in this range and the upper one have
not been experimentally studied in (Andrievsky et al.,
2019; Fradkov et al., 2021) and are not considered in
the present study.
The control laws for frequency stabilization along

with the prescribed phase shift between the rotors an-
gular positions are proposed and experimentally stud-
ied on the mechatronic vibration setup SV-2M. It is
obtained that for the low and medium frequencies the
self-synchronization of unbalanced rotors does not pre-
vent ensuring the desired phase shift between the ro-
tors. For a high frequency band, the Huygens self-
synchronization of rotors manifests itself, narrowing
the range of the achievable phase shift. Nevertheless
for all the frequencies less than the frequency of the
Sommerfeld effect, the desired phase shift in the range
of ±π/2 rad can be ensured.
The investigations of (Andrievsky et al., 2019) were

continued in (Fradkov et al., 2021), where the prob-
lem of synthesis and analysis of vibration fields is con-
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sidered and it is shown that the vibration field of the
two-rotor vibration system depends on the coordinates
of the points of fastening of the rotors, the mass of
the debalances and the steady phase difference of the
debalances provided they are in stable synchronous
rotation mode. The control law of (Andrievsky et
al., 2019; Fradkov et al., 2021) is of a bidirectional
form, where the rotation velocity of each actuator is
controlled independently of the other one by means of
its separated PI-controller with adding the symmetri-
cal cross-coupling between the control loops, produced
by the joint phase-shift PI-controller. The control law
of (Andrievsky et al., 2019; Fradkov et al., 2021) is
borrowed in the present paper aiming to produce the
multiple synchronization of the rotors with a given nor-
malized phase shift ψ∗. To this end the normalization
gain κ > 0 is introduced, so that the desired rotation
frequencies of the left ω∗l and right ω∗r rotors are re-
lated as ω∗r = ω∗l /κ and, consequently, the normal-
ized phase shift ψ between the rotors is calculated as
ψ = κϕr − ϕl, cf. (Tomchina et al., 2009; Galitskaya
and Tomchina, 2012; Tomchina, 2020).
Summarizing, the adopted bidirectional control law

for multiple synchronization of debalance rotors is as
follows:

ω∗r = κ−1ω∗l , (1)
eωl = ω∗l − ωl, eωr = ω∗r − ωr, (2)
σ̇ωl = eωl , uωl = Kiωlσωl +Kpωleωl , (3)
σ̇ωr = eωr , uωr = Kiωrσωr +Kpeωr , (4)
ψ = κϕr − ϕl, (5)
eψ = ψ∗ − ψ, (6)
σ̇ψ = sin eψ, uψ = −Ki,ψσψ +Kp,ψ sin eψ, (7)
ul = uωl + uψ, ur = uωr − uψ, (8)

where ω∗r , ω∗l denote the reference values for left and
right motor velocities, κ stands for the normalization
coefficient; eωl , eωr are the motor velocity errors; PI-
controllers for velocities of the left and right motors are
described by (3), (4), respectively, where Kiωl , Kiωr

are for the integral, and Kpωl , Kpωr are for the pro-
portional controller gains; in (5), ϕr and ϕl denote the
phase angles of the rotors, ψ stands for the normalized
phase shift between the rotors; the phase shift error is
denoted by eψ , where ψ∗ is the prescribed phase shift
between the rotors; (7) describes the phase shift PI-
controller (following (Andrievsky et al., 2019; Fradkov
et al., 2021), its sine-modification is used); ul and ur
in (8) denote the control signals applied to the left and
right drive systems. It is worth mentioning that, since
the difference in the integer number of rotor revolutions
is insignificant, instead of the sine-modification, it is
possible to reset the readings of the rotor angular sen-
sors at the end of each full rotor turnover.

4 Linear Analysis of Simplified Model
The overall system, including the mechanical part, in-

duction motors and the controller is a highly nonlin-
ear complex system of the high order (cf. (Galitskaya
and Tomchina, 2012; Fradkov et al., 2013; Tomchina,
2018; Tomchina, 2020; Fradkov et al., 2021)). How-
ever, as stated in (Fradkov et al., 2021), in medium
and high frequency ranges, the so-called the aver-
aging property, which is widely exploited in the vi-
brational mechanics is valid. Due to this property,
the fast oscillating components are averaged and only
the “slow” motions may be taken into account, see
(Blekhman, 1988; Blekhman, 2000; Kremer, 2016).
What is more, since the induction motors have their
local feedback controllers, the dynamics of the drive
systems, including the induction motor, the frequency
converter with the feedback local controller may be ap-
proximately described by the following transfer func-
tion from control signal u to angular velocity ω, cf.
(Khalil et al., 2009; Joshi and Chandorkar, 2014; Giri,
2013; Fradkov et al., 2021):

Wd(s) =
{ω
u

}
=

Kd

(T1s+ 1)(T2s+ 1)
, (9)

where Kd denotes the drive system static gain; T1 and
T2 are time constants (parameters Kd, T1, T2 may
differ for the left and the right drives; in this case
they are labeled by the corresponding indeces “l” and
“r”); s ∈ C is the Laplace transform variable. For
drive model parameters identification the standard non-
recursive least-square estimation (LSE) method was
employed in (Ljung, 1999; Andrievsky et al., 2016).
The results of the identification procedure for various
ω0 demonstrated that the variations of the drive system
model (9) parameters for different regions of the op-
erating frequency are small and the “averaged” values
Kd = 0.041 rad/s, T1 = 1.75 s, T2 = 0.246 s for both
drives are taken.
Model (9) and its parameters are used in this work for

the linear analysis of the simplified system. Also, for
the linear analysis of this Section, boundedness of the
drive input signals ul, ur is ignored, assuming that it
makes an effect during the start-up mode only, not at
the nominal operation regime and the sine-modification
(7) is replaced by the following linear equation

σ̇ψ = eψ, uψ = −Ki,ψσψ +Kp,ψeψ. (10)

These assumptions validation is made experimentally
in Sec. 5.
For studying the system stability let us employ the fre-

quency (Nyquist) criterion. To this end let us derive the
open-loop system transfer function, breaking the con-
nection in the phase shift control loop, and consider-
ing signal uψ as the input of the open-loop system and
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Table 1. Stability MarginsGm, Pm and ωcg , ωcp

κ Gm, dB ωcg , rad/s Pm, deg ωcp rad/s
0.5 12.1 3.3 58.4 1.05

1.0 9.57 3.3 52.3 1.36

2.0 6.05 3.3 37.7 2.0

the output y = Ki,ψσψ + Kp,ψeψ of the phase shift
PI-controller (10) as an output of the open-loop sys-
tem. Further, let us denote the transfer functions of
the closed-loop systems from input uψ to outputs ωl,
ωr (described by Eqs. (2) – (4), (9)) as Wω,l(s) and
Wωr (s) for the left and the right drives, respectively.
Then, taking into account relations ϕ̇l = ωl, ϕ̇r = ωr,
relation for the open-loop system output y and Eqs. (5),
(6), one obtains the following transfer function of the
open-loop system

W (s)=
Kp,ψs+Ki,ψ

s2
(
Wω,l(s)+κWω,r(s)

)
. (11)

Let us mention, that the Nyquist criterion can be also
applied directly to the MIMO system (2) – (4), (9), as
it proposed in (Bucolo et al., 2022).
Direct calculations lead to the following transfer func-

tions Wω,l(s), Wω,r(s):

Wω,{lr}(s) =
Kd,{lr}s

Aω,{lr}(s)
, where (12)

Aω,{lr}(s)=T1,{lr}T2,{lr}s
3 +(T1,{lr}+T2,{lr})s

2

+(Kd{lr}Kp,ω{lr}+1)s+Kd{lr}Ki,ω{lr}.

For numerical evaluation of the system dynamics,
the following model parameters are taken: Ki,ωr =
Ki,ωl = 730, Kp,ωr = Kp,ωl = 1260 s, Kp,ψ = 760,
Ki,ψ = 650 s, Kdr = Kdl = 0.0041, T1r = T1l =
1.7496 s, T2r = T2l = 0.2460 s. The magnitude
Bode plots for various κ ∈ {0.5, 1.0, 2.0} are shown
in Fig. 3, and the corresponding frequency stability
margins for various κ are given in Tab. 1, where the
following notation is used: the gain margin Gm, the
phase margin Pm, the associated frequencies are ωcg ,
ωcp. (Gain and phase margins and the crossover fre-
quencies are found with the help of MATLAB routine
margin). It is seen that the margins are acceptable for
practice save the case of κ = 2.0, where the gain mar-
gin Gm = 6.05 dB is a bit less the habitually recom-
mended one as 7.6 dB. However, if necessary, it may
be increased by decreasing overall PI-phase controller
gain for large κ. It is worth mentioning, that κ is not
changed rapidly during the system operation, and this
correction may be easily done before starting the sys-
tem. Alternatively, the adaptation methods can be used
for adjusting the controller parameters.
Let us consider now the linearized model of the

closed-loop system (1)–(6), (8), (9), (10) with in-
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Figure 3. Bode Plots for κ ∈ {0.5, 1.0, 2.0}.

puts ω∗l , ψ∗ and outputs eωl , eωr , eψ . Defining in-
put and output vectors as u = [ω∗l , ψ

∗]T and y =
[eωl , eωr , eψ]T on can represent (1)–(6), (8), (9) in the
following vector-matrix form

D(p)y(t) = R(p)u(t), (13)

where p = d/dt denotes the differential operator on
time t, D(s) = d0s

7 + · · ·+ d7, s ∈ C, is the Hurwits
polynomial if the asymptotic stability conditions for the
closed-loop system (13) are valid (in this case, d7 > 0),
and

R(p) =

R
eωl
ω∗
l

(p) R
eωl
ψ∗ (p)

R
eωr
ω∗
l

(p) R
eωr
ψ∗ (p)

R
eψ
ω∗
l
(p) R

eψ
ψ∗(p)

 . (14)

Consider the steady-state mode, assuming that the
time derivatives in (3), (4), (10) are zeros. This leads
to zero steady-state regulation errors, i.e. that it is
valid for (13) that R(0) = 0. It should be stressed
that this is a structural property of the system, which
is robust with respect to the plant and controller pa-
rameters. robustness of the closed-loop system sta-
bility is demonstrated above with the help of the fre-
quency stability criterion, see Fig. 3 and Tab. 1. More
detailed information about the closed-loop linearized
system dynamics for given above system parameters
may be obtained from Figs. 4–7. Pole-zero locus
of transfer functions Φ

eψ
ψ∗(s) = R

eψ
ψ∗(s)/D(s) and

Φ
eωl
ω∗
l

(s) = R
eωl
ω∗
l

(s)/D(s) for the various values of
κ ∈ {0.5, 1.0, 2.0} are demonstrated in Figs. 4–6. Cor-
responding step responses are plotted in Fig. 7.

5 Experimental Results
The experimental study of the multiple synchroniza-

tion by means of the control law (1)–(8) has been
performed on the MMLS SV-2M for the set of de-
sired frequencies ω∗l covered the ultra-low, low, mid-
dle, low and high frequency ranges for various values
of normalization coefficient κ and demanded normal-
ized phase shift ψ∗.
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5.1 Experiments for Ultra-Low Frequency Range
The experimental results for the region of ultra-low

frequencies are shown in Figs. 8–11. Figures 8, 9 re-
fer to the desired rotation speed of both rotors ω∗l , ω∗r
equal to 10 rad/s (κ = 1) and the desired synchronous
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eψ
ψ∗ (s), lower plot: Φ

eωl
ω∗
l
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Figure 7. Step responses for κ ∈ {0.5, 1.0, 2.0}.

rotation of the rotors, i.e. ψ∗ = 0.1 The angular rota-
tion velocities time histories are plotted in Fig. 8. The
Lissajous curves in coordinates (sinϕl, sinϕr) are de-
picted in Fig. 9. These plots may be treated as the
trajectories of the rotors’ corresponding points projec-
tions to the vertical axis.
As one can see from the results obtained, the “pendu-

lum” torque arising from the unbalance of the rotors in
this speed range has a significant effect on the rotation
speed. This is due to the fact that the torque required by
the engine to give rotation at the low speed is compa-
rable to the torque of the gravitational forces, and the
response rate of the drive is not enough for compen-
sating gravitational disturbances. The Lissajous plot
shown in Fig. 9 demonstrates that, despite the devia-
tions in the angular rotation velocity, the required syn-
chronous movement of the rotors is provided with ac-
ceptable accuracy. Note that the Lissajous plot corre-
sponding to synchronous rotation represents by the bi-
sector segment of the first and third quadrants.
The corresponding plots for angular velocities and

Lissajous figures at ωl = 30 rad/s, κ = 3 (that is,
ωr = 10 rad/s) and the demanded phase shift ψ∗ = π
are depicted in Figs. 10, 11. The Lissajous curve on
Fig. 11 corresponds to the “normalized” projections on
the plane

(
sinϕl, sin(κϕr)

)
. One can see that, in aver-

age, the required rotation speeds are also provided, but
it is not possible to ensure the desired phase shift be-
tween the rotation angles: instead of a segment on the
diagonal of the second and fourth quadrants, a com-
plex Lissajous curve is obtained, as one can see from
Fig. 11.

5.2 Experiments for Low Frequency Range
The low frequencies band has very limited bounds

for multiple synchronization due to the significant im-
pact of the debalance torques on the motor rotation

1 Recall that in the MMLS SV-2M, clockwise rotation of the left
rotor, and counterclockwise of the right one are considered positive.
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Figure 8. Time histories of the rotor angular velocities ωl, ωr .
ω∗l = 10 rad/s, κ = 1, ψ∗ = 0.
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Figure 9. Lissajous Curves. ω∗l = 10 rad/s, κ = 1, ψ∗ = 0.
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Figure 10. Time histories of the rotor angular velocities ωl, ωr .
ω∗l = 30 rad/s, κ = 3, ψ∗ = π.

and proximity to the lower resonant frequency of the
main platform (cf. (Tomchin and Fradkov, 2005; Frad-
kov et al., 2011; Gorlatov et al., 2015; Fradkov et
al., 2016; Fradkov et al., 2021)), therefore only a
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Figure 11. Lissajous Curves. ω∗l = 30 rad/s, κ = 3, ψ∗ = π.
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Figure 12. Time histories of the rotor angular velocities ωl, ωr .
ω∗l = 40 rad/s, κ = 2, ψ∗ = π.

few experiments have been done in this frequency
range. Results of the experiment are demonstrated by
Figs. 12–14.
The “basic” frequency ω∗l = 40 rad/s is picked out.

The normalization parameter κ is taken as κ = 2, there-
fore ω∗r is as ω∗r = 20 rad/s (and therefore lies in the
ultra-low, “forbidden”, frequency range). The desirable
normalized phase shift is set to ψ∗ = π. Time histo-
ries of the rotor angular velocities ωl, ωr are depicted
in Fig. 12. As is seen from the plots, the averaged-
values of the rotation speed are close to the desirable
ones, however the noticeable bursts of rotation speed ωl
are observed, caused by the influence of the debalance
torque and significant movements of the main platform.
The time histories of sinϕl, sin(κϕr) and the desired
process sin(κϕ∗r), plotted in Fig. 13 and the Lissajous
curves depicted in Fig. 14 show the notable phase shift
error, which under certain circumstances, however, can
be acceptable for practice. It is also worth mentioning
that the low frequency range usually is not typical for
the vibration technology needs.
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Figure 13. Time histories of sinϕl, sinϕr and desired process
sinϕ∗r for ω∗l = 40 rad/s, κ = 2, ψ∗ = π.
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Figure 14. Lissajous Curves. ω∗l = 40 rad/s, κ = 2, ψ∗ = π.
Left: (ϕl, ϕr), right: (ϕl, κϕr).
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Figure 15. Time histories of the rotor angular velocities ωl, ωr .
ω∗l = 60 rad/s, κ = 2.0, ψ∗ = 0.

5.3 Experiments for Middle Frequency Range
Experimental results for the middle frequency range

are depicted in Figs. 15–21.
Figures 15–18 are related to the case of ω∗l = 60 rad/s,
κ = 2 (which means that ω∗r = 30 rad/s). Firstly,
ψ∗ = 0 is set. Time histories of the rotor angular
velocities ωl, ωr for this case are shown in Fig. 15.
It is seen that after the transient time lasting about 5
s, the prescribed frequencies are achieved. Figure 16
demonstrates achievement of the desired normalized
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Figure 16. Time histories of sinϕl, sinϕr and desired process
sinϕ∗r for ω∗l = 60 rad/s, κ = 2.0, ψ∗ = 0.

20.7 20.75 20.8 20.85 20.9 20.95 21 21.05 21.1 21.15
t, s

-1

-0.5

0

0.5

1
sin

l
, sin

r
, sin

r

*

sin
l

sin
r

sin
r

*

Figure 17. Time histories of sinϕl, sinϕr and desired process
sinϕ∗r for ω∗l = 60 rad/s, κ = 2.0, ψ∗ = π/2.
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Figure 18. Lissajous Curves. ω∗l = 60 rad/s, κ = 2.0. Left:
ψ∗ = 0 , right: ψ∗ = π/2.

phase shift between the rotors. In this figure, the time
histories of sinϕl, sinϕr and of the desired process
sinϕ∗r are plotted. These curves may be treated as the
projections of the certain points on the left and right
rotors to the vertical axis during revolving. One can
observe coincidence of the curves of sinϕr and sinϕ∗r
with a high accuracy. The corresponding time histo-
ries, but for ψ∗ = π/2, are depicted in Fig. 17, where
achievement of the prescribed multiple synchronization
is also demonstrated. The plots in Fig. 18 show Lis-



CYBERNETICS AND PHYSICS, VOL. 10, NO. 2 9

0 5 10 15 20 25 30
t, s

0

20

40

60

80

100 l
, 

r
, 

l
*, 

r
*, rad/s

l

r

l
*

r
*

Figure 19. Time histories of the rotor angular velocities ωl, ωr .
ω∗l = 60 rad/s, κ = 3/2, ψ∗ = π/2.
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Figure 20. Time histories of sinϕl, sinϕr and desired process
sinϕ∗r for ω∗l = 60 rad/s, κ = 3/2, ψ∗ = π/2.

sajous curves on the plane (sinϕl, sinϕr) for the cases
of ψ∗ = 0 and ψ∗ = π/2.
The experimental results for ω∗l = 60 rad/s, κ = 3/2

(ω∗r = 40 rad/s) and ψ∗ = π/2 are presented in
Figs. 19–21. Time histories of the rotor angular veloci-
ties ωl, ωr are shown in Fig. 19, demonstrating achieve-
ment of the desired rotation rates approximately after
4.5 s. Ensuring the demanded normalized phase shift
between the rotors is seen from Fig. 20, where the time
histories of sinϕl, sinϕr and of the desired process
sinϕ∗r are depicted. As well as in the above case of
κ = 2, the precise regulation of the phase shift is ob-
served. Some additional information about the system
properties can be found from the Lissajous curves, plot-
ted in Fig. 21. ω∗l = 60 rad/s, κ = 3/2, ψ∗ = π/2. As
above, the left curve demonstrates “real” projections
of the certain points on rotors to the vertical axes as
(sinϕl, sinϕr), the right curve corresponds the “nor-
malized” projections on the plane

(
sinϕl, sin(κϕr)

)
.

The given normalized phase shift as π/2 would be rep-
resented by means of the circle on the right plot.
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Figure 21. Lissajous Curves. ω∗l = 60 rad/s, κ = 3/2, ψ∗ =
π/2. Left: (ϕl, ϕr), right: (ϕl, κϕr).
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Figure 22. Time histories of sinϕl, sin(κϕr) and desired pro-
cess sin(κϕ∗r) for ω∗l = 80 rad/s, κ = 2, ψ∗ = π/2.

5.4 Experiments for High Frequency Range
As was disclosed in (Andrievsky et al., 2019; Fradkov

et al., 2021), in the high frequency range (and above)
the self-synchronization property of the vibrating ma-
chine can overwhelm the efforts of the controller to en-
sure the desired phase shift between the revolving ro-
tors. The experiments were made to check this fea-
ture for the multiple synchronization case. Some re-
sults are shown in Figs. 22, 24. Parameter κ = 2 was
taken and ψ∗ was set to ψ∗ = π/2 for both experi-
ments. Time histories of sinϕl, sinϕr and desired pro-
cess sinϕ∗r for ω∗l = 80 rad/s are depicted in Fig. 22.
The time history of the phase shift ψ(t) is plotted in
Fig. 23. As it seen from the plots, that ψ(t) tends to
the given value π/2 and that the prescribed phase shift
is ensured with an appropriate precision. The situation
is drastically changed if ω∗l = 80 rad/s is taken, see
time histories in Fig. 24. Plot of sinψ presented in
Fig. 25 shows that at this frequency phase shift ψ(t)
does not tend to any constant value. This result is
consistent with the impression obtained earlier in the
work on controlled phase synchronization (Andrievsky
et al., 2019; Fradkov et al., 2021) that the ability to
control the phase shift between unbalanced rotors is
limited due to their tendency to self-synchronize at
high speeds. Expanding the capabilities of controlled
synchronization through the use of alternative control
methods is an area for further research.
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Figure 23. Time history of phase shift ψ(t) for ω∗l = 80 rad/s,
κ = 2, ψ∗ = π/2.
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sinϕ∗r for ω∗l = 90 rad/s, κ = 2, ψ∗ = π/2.
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The existing phase self-synhronization phenomenon
is studied experimentally. To this end, ω∗r = ω∗l = ω∗

were set, phase PI-controller (7) in (1)–(8) was ex-
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Figure 26. Time history of phase shift ψ(t). Self-synchronization
in phase for control law (15)–(17) at ω∗r = ω∗l = 90 rad/s.

cluded and the following control algorithm was used
indtead:

eωl = ω∗l − ωl, eωr = ω∗r − ωr, (15)
σ̇ωl = eωl , ul = Kiωlσωl +Kpωleωl , (16)
σ̇ωr = eωr , ur = Kiωrσωr +Kpeωr , (17)

see (1)–(8) for the definitions.
Time history of phase shift ψ(t) for ω∗r = ω∗l =

90 rad/s is plotted in Fig. 26, confirming presence of the
self-synchronization in phase for high frequencies. The
plot shows that the steady-state phase shift between the
rotors is very close to π/4 radians (accurate to whole
revolutions).

6 Conclusions
In the paper the problem of multiple controlled syn-

chronization of a pair of unbalanced rotors is consid-
ered. To solve it, the new bidirectional control law,
employing three PI-controllers with the cross-coupling
is proposed. A linear analysis of the dynamics of a
simplified system is presented, demonstrating the ro-
bustness of the control system with respect to the pa-
rameters of the vibration machine and the controller.
The experimental results obtained at the MMLS SV-
2M of the IPME RAS are presented, demonstrating
the efficiency of the proposed approachIt shown that
in a certain range of middle frequencies, a given nor-
malized phase shift between unbalanced rotors rotating
with multiple frequencies can be provided by the pro-
posed control law, and the resulting behavior will be
stable and robust with respect to parameters of the me-
chanical system and controller. It was also obtained
that the ability to control the phase shift between un-
balanced rotors at high frequencies is limited due to the
tendency for self-synchronization of the rotors.
Expanding the capabilities of controlled synchroniza-

tion through the use of unidirectional (master-slave
synchronization) and alternative control methods, such
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as adaptive, sliding mode, Speed gradient, Neural Net-
works, as well nonlinear correction methods is an area
for further research. It is also planned to perform the
investigations on ensuring the specified characteristics
of the movement of vibrating platforms (the so called
“vibration fields”) due to multiple synchronization with
a controlled phase shift and to study the possibility of
chaotization in this way for improvement the bulk ma-
terials mixing.
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