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Abstract 

An improved solution to the nonlinear normal modes 

of a slender beam, subjected to a linearly varying 

normal force and end thrust, is determined, by means 

of an extended method of multiple time and space 

scales; The nonlinear free vibrations of a straight 

offshore riser is considered as an example. The 

vibration frequency of a nonlinear mode is not 

constant along the riser: it is seen to depend on the 

cross-section depth and on the vibration amplitude, 

thus explaining the onset of longitudinal travelling 

waves. 
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1 Introduction 

Reliable structural performance evaluation under 

environmental and equipment borne loads are 

becoming ever more important with greater demands 

on the design of modern engineering systems. The 

linearisation assumption for light and flexible 

structures is questionable and whenever possible 

nonlinearities should be accounted for, thus leading to 

the use of nonlinear normal modes, whenever 

vibration is a concern. 

Pak and Rosenberg [1968] were amongst the first to 

propose the extension from linear to nonlinear normal 

modes. Shaw and Pierre [1991] offered a rigorous and 

general definition for nonlinear modes and devised a 

technique for their evaluation in both discrete [1993] 

and continuous [1994] systems where modal motion 

is limited to a surface in the system’s phase space, the 

invariant manifold. Their definition of nonlinear 

multimodes encompasses invariant manifolds of 

systems with internal resonance [Lacarbonara, Rega 

and Nayfeh, 2003; Lacarbonara and Rega, 2003; 

Srinil, Rega and Chucheepsakul, 2007; Srinil and 

Rega, 2007a; Srinil and Rega, 2007b].  

Mazzilli and co-workers implemented nonlinear 

normal modes in the finite element analysis of beam-

like structures oscillating in a purely single mode 

[Baracho Neto and Mazzilli, 2002; Mazzilli et al, 

2008; Soares and Mazzilli, 2000] as well as those 

with internal resonance [Baracho Neto and Mazzilli, 

2005; Baracho Neto and Mazzilli, 2008; Mazzilli et 

al, 2008]. Other relevant references to the literature 

on nonlinear modal analysis should also be 

acknowledged [Gendelman et al, 2003; King and 

Vakakis, 1996; Manevitch, 2001; Mikhlin, 1995; 

Mikhlin and Zhupiev, 1997; Mikhlin and Morgunov, 

2001; Vakakis and Rand, 1992a; Vakakis and Rand, 

1992b]. 

In a previous investigation [Mazzilli et al, 2008], 

the author studied the nonlinear normal modes of a 

beam subjected to an end thrust and uniformly 

distributed axial load, under the assumption that the 

primary dynamic behaviour would be determined by 

the average normal force along the beam length. 

Comparison with finite-element results showed that, 

in spite of overall qualitative agreement, the actual 

normal force variation along the beam length should 

be taken into account for improved quantitative 

results, which is the purpose of this paper. 

Classical simplifying assumptions, such as 

neglecting longitudinal inertial forces and averaging 

geometric stiffness effects along the beam, as already 

proposed by a number of authors  see Kauderer 

[1958] and Singh, Sharma and Rao [1990]  lead to 

an equation of motion for the transversal 

displacement, which is de-coupled from the 

longitudinal one. 

The method of multiple scales is used to determine 

the nonlinear normal modes, considering both 

bending and geometric stiffness effects. 

Nonlinear modes are expected to be a useful tool 

when modelling the dynamics of vertical offshore 

risers, since they may provide efficient projecting 

functions for number of degrees-of-freedom reduction 

 see Shaw, Pierre and Pesheck [1999] and Mazzilli, 

Soares and Baracho Neto [2001] , thus allowing for 

a smaller computational effort to analyse fluid-

dynamic instabilities, such as those caused by vortex 



induced vibrations (VIV’s). 

The paper is organised as follows. In Section 2, the 

nonlinear equations of an axially loaded Bernoulli-

Euler beam are derived. In Section 3, nonlinear 

normal modes are developed, by using a combination 

of a perturbation method and the invariant manifold 

approach. The developed methodology is applied in 

Section 4 to the case study of a pinned-pinned riser 

beam. 

 

2 Nonlinear equations of motion of an axially-

loaded beam 

In this section the nonlinear equations of motion of an 

axially loaded beam are presented, as they appear 

following a Hamiltonian procedure  see Pars [1965] 

and Meirovitch [1970].  

 

 

 

 

 

 

 

 
 

Figure 1.   Schematic of an axially loaded beam with 

uniformly distributed load p. 

 

Figure 1 introduces the basic notation and the 

kinematics of the Bernoulli-Euler beam model. Here, 

m and p  are the mass and the axial load per unit 

length, and EA  and EI  are the axial and flexural 

rigidity. 

The Bernoulli-Euler kinematical assumption leads 

to the following expressions for the displacements of 

a generic point P: 

 

(1) 

For small strains, both the Lagrangian and the 

engineering strain are identical for practical purposes. 

The strain at a generic point P of the riser along the 

longitudinal direction is: 

 

(2) 

where ε  is the strain at the cross-section centroid: 

 

(3) 

The assumption ( )2

Pp
wOu =  is implicit in the 

approximation introduced in (2). Equation (4) for the 

transversal motion, decoupled from the longitudinal 

motion, has been derived using Hamilton’s Principle 

and can be followed in Mazzilli et al [2008]. 

 

(4) 

where  

 

(5) 

It is assumed that the beam is fixed at l=x , that is, 

0=
l

u , and that an axial force ( )00N  is applied to 

the originally rectilinear beam at 0=x  in time 0=t  

together with the rightward-distributed axial load p , 

thus giving origin to a certain leftward axial 

displacement 0u− , before the onset of transversal 

vibration. The left end is then fixed, that is, 

( ) constutu == 00 , so that once the transversal 

oscillation takes place, the axial force at the left end 

varies with time (as a matter of fact, ( ) ( )000 NtN ≥ , 

due to the axial strain increase caused by bending): 

 

(6) 

Once w  is determined from (4), the axial 

displacements can be obtained from Mazzilli et al 

[2008] as: 

 

(7) 

Therefore, (4) is conveniently rewritten as:  
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(8) 

Equation (8) can be put in a non-dimensional form, 

after the following variable transformation is 

introduced: 

 

(9) 

In (9), 1ω stands for the linear-theory first-mode 

frequency of a beam subjected to a constant normal 

force of value N . Thus: 

 

 

(10) 

Note that axial loading is responsible for a non-

constant coefficient for the term 
22

zv ∂∂ . 

Extending the method of multiple scales  see 

Nayfeh and Mook [1979] and Nayfeh and Nayfeh 

[1994] , the solution will be sought in the form of 

an asymptotic expansion in terms of time and space 

scales, as well: 

 

(11) 

where ε  is a book-keeping parameter. 

The following differential operators and 

relationships are introduced: 

 

 

 

(12) 

Substituting (11)-(12) into (10) and collecting terms 

of the same order of ε , it is possible to arrive at 

differential equations whose solutions and solvability 

conditions allow for the characterization of the 

nonlinear normal modes. 

 
2.1 Order ε  solution 

The equation of order ε  leads to: 

 

(13) 

where 1v  must satisfy the boundary conditions 
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Thus, the solution 1v  can be written in the form: 

 

 

(14) 

Substituting (14) into (13), one obtains: 
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where 
k

ω̂  is the normalised frequency of linear-mode 

k with respect to 1ω , taking into account both the 

beam bending and geometric stiffness. For long risers, 
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bending stiffness. Therefore, an almost linear 
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relationship between 
k

ω̂  and the mode 

number k takes place, which favours internal 

resonance and a strong modal coupling, Mazzilli et al 

[2008], which would require consideration of 

nonlinear multimodes  see Baracho Neto and 

Mazzilli [2002, 2005, 2008]. Yet, this situation is 

beyond the scope of the present paper. 

 

3 Nonlinear normal modes 

A nonlinear normal mode is a free-vibration motion 

of a nonlinear system about its static equilibrium 

configuration, which takes place on a two-

dimensional invariant manifold embedded in the 

phase space, so that it is tangent at the equilibrium 

point to the corresponding linear system eigenplane 

 see Shaw and Pierre [1991, 1993]. Hence, once the 

initial conditions have set a motion on this manifold, 

it will stay there. The nonlinear normal mode turns 

out to be the solution (14) for a certain mode k. It is 

pursued following the steps of the method of multiple 

scales. Therefore, from this point on, the summation 

implied in the solution (14) will not apply, that is, 

only the terms referring to the particular mode k under 

analysis will be considered. 

 

3.1 Order 
2ε  solution 

The equation of order 
2ε  leads to: 

 

 

(16) 

From equation (16), the solvability condition, that 

is, the elimination of secular terms, requires that 
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RRSDRD . Note that the 

solution 
k

v2  is already included in 
k

v1 , so that it will 

not be kept in the asymptotic expansions further on. 

 

3.2 Order 
3ε  solution 

The equation of order 
3ε  leads to: 

 

 

 

 

(17) 

Equation (17) requires the solvability conditions: 

 

 

(18) 

The last two of equations (18) yield: 

 

(19) 

From (19) and the first two of equations (18), it can 

be seen that: 
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(21) 

Let thus 
k

θ be such that: 

 

(22) 

which obviously satisfies (21). Taking (22) and (19) 

in (18), it can be seen that the following differential 

equation in ( )
2τθ

k
 remains to be integrated: 

 

(23) 

or 

 

(24) 

and finally 

 

(25) 

A particular solution of (17) can now be written in 

the form: 

 

(26) 

The nonlinear normal mode k, up to terms of order 
3ε  can now be written from (11), (14), (15), (19), 

(25) and (26): 

 

(27) 

It is understood that these nonlinear normal modes 

are similar to the linear ones, as far as the transversal 

motion is concerned. In other words, the invariant 

manifold that characterises the nonlinear normal 

mode coincides with the corresponding linear-mode 

eigenplane, though a nonlinear oscillator rules the 

system dynamics  see Shaw and Pierre [1991, 
1993] and Shaw, Pierre and Pesheck [1999]. 

There are other important distinctive features 

between the linear and nonlinear modes here. It is 
seen that the modal frequency strongly depends on z . 

The normal-force decreasing with z   term 

( )z−
2

1γ̂   lowers the frequency, but the nonlinear 

vibration-amplitude effect  term in 

( ) z

k
keAk

ηεεµπ ˆ2222
2
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8

3   acts in the opposite way. 

The prevailing effect for each  cross-section position 

depends on the system parameters. In any case, it is 

clear that frequency variations should be expected 

along the beam, for the same mode k. This may 

explain the onset of travelling waves in the nonlinear 

response, as opposed to the standing waves of the 

classical linear modes. 

 

4 Case study 
The outcomes of section 3 are applied to the 

analysis of a vertical riser subjected to pre-stressing 

and immersed weight. In the case of an immersed 

riser, m  should account for water or oil inside it, plus 

the surrounding water added mass.  

The system parameters are: 
211 /101.2 mNE ×= ; 

22
1010.1 mA

−×= ;
451072.4 mI

−×= ; m800,1=l ; 

mkgm /24.141= ; mNp /727= ; NN
6

0 102×= . 

Figures 2 and 3 display the displacement and 

velocity time histories for the first nonlinear normal 

mode at three different cross sections, and initial 

conditions corresponding to 001 =θ  and 

( ) ( ) 025.05.0exp 11 =ηεA . 

 

 

Figure 2.   Displacement time-history for the first 

nonlinear normal mode at different cross sections. 
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Figure 3.   Velocity time-history for the first 

nonlinear normal mode at different cross sections. 

Figure 4 displays the phase portraits corresponding to 

the same initial conditions and cross sections of 

Figures 2 and 3. 

 

Figure 4.   Phase portraits for three different cross 

sections. 

 

As already pointed out, due to the frequency 

variation with z , the cyclic motion of distinct cross 

sections will last different periods and will induce 
travelling waves along the longitudinal direction, the 

effect of it can be seen in the motion projection upon 

the plane ( ) ( )6/2/ ll vv ×  of Figure 5, which shows 

how the first nonlinear normal mode correlates the 

first and the third linear modes. Here the initial 

conditions correspond to ( ) ( ) 500.05.0exp 11 =ηεA  

and 0
01

=θ . 

 

Figure 5.    Phase portrait: nonlinear relationship 

between displacements at z=0.5 and z=0.833 

 

5 Conclusions 

The results presented in this paper at the same time 

that improve the findings of the analytical solution 

presented in Mazzilli et al [2008], where the average 

normal force was used to characterise the natural 

frequencies and nonlinear response, detect features 

that are in qualitative agreement with previous 

observations using finite-element models [Mazzilli et 

al , 2008], such as the travelling-wave effect along the 

beam, which is most probably related to the modal 

velocity influence onto the equation of the nonlinear 

modal oscillators. Extension of the approach used 

here to consider nonlinear multimodes should be done 

next. 
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