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Abstract
The problem of monoaxial attitude control of a rigid

body subjected to nonstationary perturbations is inves-
tigated. The control torque consists of a dissipative
component and a restoring one. The cases of linear
and nonlinear restoring and perturbing torques are an-
alyzed. Two theorems on asymptotic stability of the
programmed orientation are proved. The results of a
numerical simulation are presented to confirm the con-
clusions obtained analytically.
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1 Introduction
Success in the study of physical and mechanical prob-

lems essentially depends on the quality of the con-
structed mathematical model. When constructing a
mathematical model describing the dynamics of a me-
chanical system, we inevitably confine ourselves to
take into account main acting forces and torques, re-
lating all the others to the category of disturbing ones.
In some cases, the structure of perturbing forces and

torques is known, and their influence can be taken into
account using perturbation techniques [Bogoliubov and
Mitropolsky, 1961; Nayfeh, 1981; Markeyev, 2011].
Methods of perturbation theory are potent for study-
ing a variety of dynamic problems. In particular, they
are widely and successfully used in the problems of the
dynamics of artificial and natural celestial bodies [Aku-
lenko, Leshchenko and Chernous’ko, 1986; Tikhonov,
2002; Tikhonov, 2004; Krasilnikov and Amelin, 2016].

In this case, the greatest difficulty may occur due to
time-varying perturbations.
A powerful tool for the stability analysis of non-

stationary systems is the averaging method, see [Bo-
goliubov and Mitropolsky, 1961; Guckenheimer and
Holmes, 1983; Grebennikov, 1986; Khapaev, 1993;
Manevich, Smirnov and Romeo, 2016]. This method
permits us to reduce investigation of stability of time-
varying systems to that of corresponding time-invariant
averaged systems, possibly resulting in an essential
simplification.
However, it should be noted that the application of

the averaging technique is well developed only for the
case where considered systems are fast time-varying.
In this case the averaging technique is widely used in
a variety of dynamics and control problems [Tikhonov,
2005; Ovchinnikov, Roldugin and Penkov, 2012; Kos-
jakov, E.A. and Tikhonov, 2015; Kovaleva, 2016;
Chikhachev, 2017].
In [Aleksandrov, 1996; Aleksandrov, 2001], an origi-

nal approach to Lyapunov functions constructing was
proposed, and, on the basis of the approach, new
stability conditions for nonlinear time-varying sys-
tems were found. The results of [Aleksandrov, 1996;
Aleksandrov, 2001] were further developed in [Peute-
man and Aeyels, 1999; Peuteman and Aeyels, 2011;
Tikhomirov, 2007; Aleksandrov, Aleksandrova and
Zhabko, 2013].
Compared with known stability conditions obtained

with the aid of the averaging method, the principal
novelty of the results of [Aleksandrov, 1996; Aleksan-
drov, 2001; Peuteman and Aeyels, 1999; Peuteman and
Aeyels, 2011; Tikhomirov, 2007; Aleksandrov, Alek-
sandrova and Zhabko, 2013] is that, to guarantee the
asymptotic stability for considered systems, right-hand
sides of the systems need not be fast time-varying.
In the present contribution, the attitude dynamics and

control of a rigid body under the influence of a non-
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stationary perturbing torque are investigated. No limi-
tations are imposed on the rate of time-varying in the
perturbing torque. The problem of monoaxial stabi-
lization of a rigid body is studied. The control torque
consists of a dissipative component and a restoring one.
The cases of linear and nonlinear restoring and perturb-
ing torques are analyzed. Two theorems on asymptotic
stability of the programmed orientation are proved.

2 Statement of the Problem
Consider a rigid body rotating around its mass center
O with angular velocity ω. Let the axes Oxyz be prin-
cipal central axes of inertia of the body. Differential
equations describing the attitude motion of the body
under control torque M have the form

Θω̇ + ω ×Θω = M, (1)

where Θ = diag{A,B,C} is a body inertia tensor in
the axes Oxyz, see [Schaub and Junkins, 2009].
Let unit vectors s and r be given, and vector s be con-

stant in the inertial space and vector r be constant in
the body-fixed frame. Then vector s rotates with re-
spect to coordinate system Oxyz with angular velocity
−ω. Hence,

ṡ = −ω × s. (2)

Thus, we will study the system consisting of the Euler
dynamic equations (1) and the Poisson kinematic equa-
tions (2).
Consider the problem of monoaxial stabilization of

the body [Zubov, 1978]: it is required to design a con-
trol torque M ensuring that system (1), (2) admits the
asymptotically stable equilibrium position

ω = 0, s = r. (3)

It is known, see [Zubov, 1978], that the torque M can
be chosen as the sum of dissipative component Md and
restoring one Mr: M = Md +Mr, where

Md = hDω, Mr = −a∥s− r∥µ−1s× r,

h > 0, µ ≥ 1, a > 0, D is a constant symmetric
negative definite matrix, and ∥·∥ denotes the Euclidean
norm of a vector.
In the present paper, we consider the case where,

along with the control torque M, a perturbing torque
M̃ acts on the body. Let

M̃ = Φ(t)Q(s− r). (4)

Here Φ(t) ∈ R3×k is a continuous and bounded for
t ≥ 0 matrix, whereas components of the vector
Q(u) ∈ Rk are continuously differentiable for u ∈ R3

homogeneous of the order µ functions.
Thus, system (1) can be rewritten as follows

Θω̇ + ω ×Θω = hDω

−a∥s− r∥µ−1s× r+Φ(t)Q(s− r).
(5)

Assumption 1. Let

1

T

t+T∫
t

Φ(τ) dτ → 0 as T → +∞

uniformly with respect to t ≥ 0.

Assumption 1 is a classical condition of the averag-
ing method. It is well known that the condition is ful-
filled for periodic, quasiperiodic and almost periodic
functions with zero mean values, see [Bogoliubov and
Mitropolsky, 1961]. Moreover, it is fulfilled for some
ergodic classes of recurrent functions [Zubov, 1999].
Functions satisfying Assumption 1 are widely used in

problems of celestial mechanics [Grebennikov, 1986;
Khapaev, 1993], electrodynamics [Khapaev, 1993; Ma-
yu-shan and Altsybeyev, 2016], radio engineering [Bo-
goliubov and Mitropolsky, 1961], population dynamics
[Britton, 2003], etc.
It is worth noting that torques of the form (4) are often

occur in mathematical models of satellites moving in
circular or elliptic orbits, see [Antipov and Tikhonov,
2014; Giri and Sinha, 2017].
In this contribution, we will look for conditions under

which perturbations do not disturb asymptotic stability
of the equilibrium position (3).

3 Linear Restoring and Perturbing Torques
Consider the case where µ = 1, and restoring and

perturbing torques are linear. Then system (5) takes the
form

Θω̇+ω×Θω = hDω− as× r+Φ(t)(s− r). (6)

Thus, here Φ(t) ∈ R3×3.

Theorem 1. Let Assumption 1 be fulfilled. Then there
exists a number h0 > 0 such that the equilibrium po-
sition (3) of system (2), (6) is asymptotically stable for
any h ≥ h0.

Proof. Construct a Lyapunov function candidate for
system (2), (6) on the basis of a synthesis of the ap-
proaches developed in [Antonchik, 1983; Kosov, 2007;



CYBERNETICS AND PHYSICS, VOL. 7, NO. 1 7

Aleksandrov, Kosov and Chen, 2011] and in [Aleksan-
drov, 1996; Tikhomirov, 2007].
First, using the results of [Antonchik, 1983; Kosov,

2007; Aleksandrov, Kosov and Chen, 2011], consider
the function

V1(ω, s) =
γ

2
ω⊤Θω +

1

2
∥s− r∥2

− 1

h
(s× r)⊤D−1Θω,

(7)

where γ is a positive parameter.
Differentiating V1(ω, s) with respect to system (2),

(6), we obtain

V̇1 = γhω⊤Dω − γaω⊤(s× r)

+γω⊤Φ(t)(s− r) +
1

h

(
(ω × s)× r

)⊤
D−1Θω

+
1

h
(s× r)⊤D−1(ω ×Θω + as× r−Φ(t)(s− r)).

Taking into account negative definiteness of the matrix
D, we arrive at the estimate

V̇1 ≤ −
(
β1γh− β2

h

)
∥ω∥2 − β3

h
∥s× r∥2

+
β4
h
∥s− r∥∥ω∥2 + β5γ∥s− r∥∥ω∥

− 1

h
(s× r)⊤D−1Φ(t)(s− r),

where β1, β2, β3, β4, β5 are positive constants.
There exists a number δ > 0 such that

V̇1 ≤ −
(
β1γh− 2β2

h

)
∥ω∥2 − β3

2h
∥s− r∥2

+β5γ∥s− r∥∥ω∥ − 1

h
(s× r)⊤D−1Φ(t)(s− r)

for ∥s− r∥ < δ.
Next, applying the approach developed in [Aleksan-

drov, 1996; Tikhomirov, 2007], define a Lyapunov
function by the formula

V2(t,ω, s) = V1(ω, s)+
1

h
(s×r)⊤D−1J(t, ε)(s−r).

Here ε is a positive parameter, and

J(t, ε) =

t∫
0

exp(−ε(t− τ))Φ(τ) dτ. (8)

Consider the derivative of V2(t,ω, s) with respect to
system (2), (6). We have

V̇2 ≤ −
(
β1γh− 2β2

h

)
∥ω∥2 − β3

2h
∥s− r∥2

+

(
β5γ +

β6
hε

)
∥s−r∥∥ω∥+ β7 ε

h
∥J(t, ε)∥∥s−r∥2

for ∥s−r∥ < δ, where β6 and β7 are positive constants.
It is known, see [Bogoliubov and Mitropolsky, 1961],

that ε∥J(t, ε)∥ → 0 as ε → 0 uniformly with respect
to t ≥ 0. Therefore, we can choose and fix sufficiently
small values of γ and ε and after that find a sufficiently
large number h0 > 0 such that

γη1
4

∥ω∥2 +1

4
∥s−r∥2 ≤ V2 ≤ γη2∥ω∥2 +∥s− r∥2,

V̇2 ≤ −1

2
β1γh∥ω∥2 − β3

4h
∥s−r∥2

for h ≥ h0, ∥s− r∥ < δ. Here

η1 = min{A,B,C}, η2 = max{A,B,C}. (9)

Thus, function V2(t,ω, s) satisfies all the conditions
of the Lyapunov asymptotic stability theorem. This
completes the proof.

Remark 1. Theorem 1 states that the destabilizing ef-
fect of a nonstationary perturbation in restoring torque
can be compensated via choosing a sufficiently large
multiplier at the vector of dissipative torque.

4 Nonlinear Restoring and Perturbing Torques
Next, consider the case where parameter µ in equa-

tions (5) is greater than one. Hence, restoring and per-
turbing torques are essentially nonlinear.
It is worth mentioning that mechanical systems with

essentially nonlinear control laws were studied, for ex-
ample, in [Rivin, 2003; Luongo, 2015]. It is known
[Aleksandrov, Aleksandrova and Zhabko, 2013; Peute-
man and Aeyels, 2011] that such control laws are more
robust with respect to impact of delay and nonstation-
ary perturbations than linear ones.

Theorem 2. Let Assumption 1 be fulfilled. If µ > 1,
then the equilibrium position (3) of system (2), (5) is
asymptotically stable.

Proof. Choose a Lyapunov function candidate in the
form (7), where γ is a positive parameter. The deriva-



8 CYBERNETICS AND PHYSICS, VOL. 7, NO. 1

tive of this function with respect to system (2), (5) is

V̇1 = γhω⊤Dω − γa∥s− r∥µ−1ω⊤(s× r)

+γω⊤Φ(t)Q(s− r) +
1

h

(
(ω × s)× r

)⊤
D−1Θω

+
1

h
(s× r)⊤D−1(ω ×Θω −Φ(t)Q(s− r))

+
1

h
a∥s− r∥µ−1(s× r)⊤D−1(s× r).

If the value of γ is sufficiently large, then there exist
positive numbers δ, β1, β2 such that

V̇1 ≤ −β1γ∥ω∥2 − β2∥s− r∥µ+1

− 1

h
(s× r)⊤D−1Φ(t)Q(s− r)

for ∥s− r∥ < δ.
Next, construct a Lyapunov function in the form

V2(t,ω, s)=V1(ω, s)+
1

h
(s×r)⊤D−1J(t, ε)Q(s−r),

where ε is a positive parameter, and the matrix J(t, ε)
is defined by formula (8). We obtain

V̇2 ≤ −β1γ∥ω∥2 − β2∥s− r∥µ+1

+
β3
ε
∥s− r∥µ∥ω∥+ β4 ε∥J(t, ε)∥∥s− r∥µ+1

for ∥s− r∥ < δ, where β3 > 0, β4 > 0.
Hence, one can choose a sufficiently large value of γ

and sufficiently small values of δ and ε such that

γη1
4

∥ω∥2 + 1

4
∥s− r∥2 ≤ V2 ≤ γη2∥ω∥2 + ∥s− r∥2,

V̇2 ≤ −1

2
β1γ∥ω∥2 − β2

2
∥s− r∥µ+1

for ∥s − r∥ < δ. Here constants η1 and η2 are defined
by formulae (9). This completes the proof.

Remark 2. In contrast to Theorem 1, in Theorem 2 it
is not required that parameter h be sufficiently large.
In the case where µ > 1, asymptotic stability of the
equilibrium position (3) of system (2), (5) is guaranteed
for an arbitrary h > 0.

5 Simulation Results
In this section, we demonstrate the previous theoreti-

cal results by means of a numerical simulation. Let the
inertial parameters of a rigid body are given as: A = 5,

B = 6, C = 4. The programmed orientation (3) of
the body is such that direction cosines γ1, γ2, γ3 of the
axis z in the inertial coordinate system are equal to each
other and equal to 1/

√
3.

Consider the control process governed by system (2),
(6). Choose the matrix D of dissipative torque in the
form D = −diag{1, 1, 1}. Let a = 1, and the disturb-
ing torque be taken in the form M̃ = b sin(ω0t) s × r.
We assume that b = 2 (b is two times greater than
a), and ω0 is rather small: ω0 = 0.3. The initial
values of “aircraft” angles φ(0) = 0.5, ψ(0) = 0.6,
θ(0) = 0.8 result in the following initial values of di-
rection cosines: γ1(0) = 0.717356, γ2(0) = 0.334019,
γ3(0) = 0.611418. The initial values of angular veloc-
ity projections are ωx(0) = ωy(0) = ωz(0) = 1.
Choosing the value of parameter h, we first take the

value h = 2. The results of numerical integration (Figs.
1, 2) show that control process does not converge to the
programmed orientation (3).

Figure 1. Direction cosines time history, h = 2

Figure 2. Angular velocity time history, h = 2

Then we choose h = 3 and repeat calculations with
the same initial conditions. In accordance with Theo-
rem 1 and Remark 1, Figs. 3, 4 demonstrate that the
equilibrium position (3) is asymptotically stable.

6 Conclusion
In the present paper, the problem of monoaxial at-

titude stabilization of a rigid body subjected to time-
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Figure 3. Direction cosines time history, h = 3

Figure 4. Angular velocity time history, h = 3

varying perturbations was studied. The considered per-
turbations are represented as linear combinations of ho-
mogeneous functions with time-varying coefficients. It
is assumed that the orders of perturbations coincide
with those of components of restoring torque, and co-
efficients possess zero mean values. In particular, coef-
ficients of a such type may describe periodic or almost
periodic oscillations. It is worth mentioning that the
stability conditions derived in this paper do not impose
any restrictions on amplitudes of these oscillations.

It is worth mentioning that a magneto-Coulombic at-
titude control system for a satellite stabilization was
exploited in [Giri and Sinha, 2017]. The averaging
method was used for the stability analysis of a pro-
grammed motion. Meanwhile, for justification the pos-
sibility of such an approach, the authors artificially in-
troduce a small parameter at control torque. This re-
sults in the necessity of an additional assumptions, such
as isoinertial mass distribution and the absence of dis-
turbing torques. We believe that our approach to the
application of the averaging method is more effective,
and it can be used for the problem considered in [Giri
and Sinha, 2017] without limitations mentioned above.
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