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Universitat Politècnica de Catalunya

Spain
bego med@yahoo.es

Abstract
Wind turbines are being used to generate electricity as

an alternative energy source to conventional fossil fu-
els, and it is well known that wind towers must to sus-
tain continuous vibration forces throughout their opera-
tional life. In this paper, a stability analysis of bending
deflection of a wind turbine steel tower is presented.
The wind turbine is modelled as the structure of a sim-
plified beam-column by a switched system. It is mod-
elled by using a Hamiltonian system, which simplifies
the system under study and allows to analyze the sta-
bility dynamics of the system. An eigenvalue analysis
have been done in order to analyze the stability of the
system; finally, also, some transient simulations of the
system are presented to verify the results obtained.

Key words
Wind turbine tower, switched linear systems, reacha-
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1 Introduction
One of the major forms to produce renewable energy

is to use the wind and one of the most efficient ways
of converting the kinetic energy in wind into mechani-
cal power is extracting energy from wind, using Wind
turbines [Burton, Jenkins, Sharpe, and Bossanyi, 2011;
Fahad, 2012].
It is known that many wind turbine damage occurs due

to the structural failure of wind turbine towers. The
most of these failures are caused by the strong wind
striking the structure or wind induced vibrations. The
aim of this paper is to analyze of bending deflection of
a wind turbine steel tower
The steel tower of wind-turbine structure can be sim-

plified as a cantilever beam-column with varying di-
ameter involve in bending and torsion. B. Mediano
in [Mediano, 2011] this kind of structures modelling
them as Hamiltonian systems.Some other authors study
the control of vibratory systems by means of the flat-

Figure 1. Structure of Wind Turbine Tower

ness approach as for example [Monroy-Pérez, Romero-
Meléndez, 2012].
The Finite Elements theory is the most popular

method used in strength and buckling analysis of wind-
turbine structures, some authors as M. Wang, Zh.
Wang, H. Zhao in [Wang, Wang and Zhao, 2009] ana-
lyze the structure by means a transfer matrix o a linear
system. In this paper a new method to model the struc-
ture of a simplified beam-column based on switched
system is presented.
Roughly speaking, a switched system is a family of

continuous-time (or discrete-time) dynamical subsys-
tems and a rule that determines the switching between
them.
Given an initial time t0, a switching path is a function

of time σ : [t0, T ) −→M = {1, 2, . . . , ℓ}, T > t0.

Definition 1.1. A switched system is a system which
consists of several subsystems and a rule that orches-
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trates the switching between them.

ẋ(t) = Aσx(t) +Bσu(t), (1)

where Aσ ∈ Mn(R), Bσ ∈ Mn×m(R), and ẋ =
dx/dt.

The pairs of matrices (Ak, Bk) for k ∈M are referred
as the subsystems of (1) Given an initial state x(t0) =
x0, input u, and a switching path σ : [t0, tf ] −→ M ,
the solution of state equation (1) is given by

x(t) = eAik
(ttk) . . . eAi0

(t1t0)x0
+eAik

(ttk) . . . eAi1 (t2t1)

×
∫ t1
t0
eAi0 (t1τ)Bi0u(τ)dτ + . . .

+
∫ t

tk
eAik

(tτ)Biku(τ)dτ,

(2)

for tk < t ≤ tk+1, 1 ≤ k ≤ s where t0, t1, . . . , ts is
the switching time sequence of σ, ts+1 = tf , and i0 =
σ(t0), . . . is = σ(ts) is the switching index sequence
of σ.
Consider now

Ψ(t, σ, x0) = eAik
(t−tk)eAik−1

(t−tk−1) . . . eAit0
(t−t0),

t ∈ [tk, tk+1], so the state transition matrix is given by
Φ(t1, t2, σ, x0) = ψ(t1, σ, x0)(ψ(t2, σ, x0))

−1 and the
solution can be rewritten as

ϕ(t, t0, x0, u, σ) =

Φ(t, t0, σ, x0)x0 +
∫ t

t0
Φ(t, τ, σ, x0)u(τ)dτ.

(See [Sun and Ge, 2005], [Gurvits, Shorten, and Ma-
son, (2007)] for more information about switched sys-
tems).
The structure of the paper is as follows. In section

2 modeling assumptions are presented, in section 3
the structure of wind turbine tower is modelled as a
switched system, in section 4 the reachability of the
system is analyzed. In section 5 some simulations have
been realized and eigenvalues have been calculated for
a particular steel tower in order to analyze the stability
of the system. Finally, some conclusions are summa-
rized in section 6.

2 Modeling Assumptions
For static analysis of a wind turbine tower, take into

account the following series of forces. The first one
due to gravity consist of a concentrated force at the top
of the tower, representing the weight nacelle, gear box,
runner generator, etc., and the weight of the tower it-
self distributed along of its height. The second series of
forces due to the wind resistance, distributed wind pres-
sure along the height of the tower q(z) and the aerody-
namics loads at the elevation of the engine axis. The

Z

Y

X

Figure 2. Wind Turbine tower seen as beam-column

wind forces on the rotors are calculated and transferred
to the top of the tower by equivalent static method con-
sisting of the following three forces and moments

1. Fy wind force
2. Fx yaw force
3. Fz vertical force
4. My blade bending moment
5. Mx tower bending moment
6. Mz yaw moment

The direction of the y axis is horizontal in the wind
direction, the z axis is vertical with upward direction.
The structure of wind turbine tower can be simplified

as a beam column with linearly varying diameter and
stepwise varying thickness subject to an axial force P
and it can be modeled by means the following differen-
tial equation

∂2

∂z2

(
EI(z)

∂2y

∂z2

)
+

∂

∂z

(
P (z)

∂y

∂z

)
= q(z, t) (3)

Where EI is the flexural rigidity, y(z) is the deflection
in the yz-plane and q is the transverse load.
The force q can be written as:

q = mf
d2y

dt2

∣∣∣∣
z=Ut

(4)
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and the dynamics if the system is described in the fol-
lowing manner

EI
∂4y

∂z4
+ (P −mqU)2

∂2y

∂x2
− 2mqU

∂2y

∂z∂t
+

−mq
∂2y

∂t2
= 0

(5)

that can be approximated by a Hamilton equation.

3 Switched System Model
When the column is divided into a number of elements

it can be assumed that the axial force, wind loads, sec-
tion modules are constant with respect z in each ele-
ment.
As a consequence the equation is reduced to

EI
∂4y

∂z4
+ P

∂2y

∂z2
= q (6)

corresponding to the linear dynamical system


0 1 0 0
0 0 1 0
0 0 0 1
0 0 − P

EIi
0



y
y′

y′′

y′′′

+


0
0
0
q

EIi

 =


y′

y′′

y′′′

yiv

 (7)

Notice that y is the deflection, y′ = θ the slope angle,
EIy′′ = M the moment and EIy′′′ = Q the shear
force at the corresponding section.

Remark 3.1. A solution of the equation (7) is X(z) =
Xp(z) + Xh(z) where Xp(z) is a particular solution
and Xh(z) is the general solution of the homogeneous
associated linear system
Proposing a second order polynomial vector as a par-

ticular solution, we obtain Xp(z) =


q
2P z

2

q
P z
q
P
0

.

The characteristic polynomial of the homogeneous
system is t4 + P

EI t
2 and the roots are t = 0 double

and t = ±
√
− P

EI = ±
√

P
EI i. So

Xh(z) =
αz + β + γ sin

√
P
EI z + δ cos

√
P
EI z

α+ γ
√

P
EI cos

√
P
EI z − δ

√
P
EI sin

√
P
EI z

−γ P
EI sin

√
P
EI z − δ P

EI cos
√

P
EI z

−γ P
EI

√
P
EI cos

√
P
EI z + δ P

EI

√
P
EI sin

√
P
EI z


and the general solution is

X(z) =
αz + β + γ sin

√
P
EI z + δ cos

√
P
EI z +

q
2pz

2

α+ γ
√

P
EI cos

√
P
EI z − δ

√
P
EI sin

√
P
EI z +

q
P z

−γ P
EI sin

√
P
EI z − δ P

EI cos
√

P
EI z +

q
P

−γ P
EI

√
P
EI cos

√
P
EI z + δ P

EI

√
P
EI sin

√
P
EI z

 .

(8)
The term

q

2p
z2 in the solution is the particular solu-

tion related to the uniform load q, Whereas inner bend-
ing forces can be expressed in the following manner

M(z) = EI
∂2y

∂z2

Q(z) =
∂M

∂z

In our particular setup the boundary conditions of the
i section are

yz=0 = yi−1, θz=0 = θi−1,
Mz=0 =Mi−1, Qz=0 = Qi−1

so, substituting the above conditions in the general so-
lution of the linear system we obtain the values of the
parameters for this case:

α = y′i−1 +
EIi−1

P y′′′i−1,

β = yi−1 +
EIi−1

P y′′i−1 −
EIi−1

P 2 q,

γ = −EIi−1

P
1√
P

EIi−1

y′′′i−1,

δ = q
P 2EIi−1 − EIi−1

P y′′i−1.

Substituting the value of these parameters to (8) we
can obtain the deflection, slope angle, moment and
shear force status of the ends of the ithe beam section.

In order to obtain the solution for any section from ini-
tial conditions we consider the switched linear system

AσX +Bσ = Ẋ, σ = {0, 1, . . . , n}

where

Ai =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 − P

EIi
0

 , Bi =


0
0
0
q

EIi


for each i, z ∈ [z1, zi+1] [0, L) = [0, z1) ∪ [z1, z2) ∪
. . . ∪ [zn, L).
It is possible to obtain the state vector at any section

of the wind turbine tower from initial state vector in the
following manner:

Xi = Ai . . . A1X0+Ai . . . A2B1+. . .+AiBi−1+Bi.
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4 Reachability of the System
Consider the switched linear control system defined in

(1). An important requirement for the design of feed-
back control systems is the knowledge of the structural
properties of the switched systems under consideration,
a fundamental structural property is the reachability.
The reachability character of a system is an important

condition for solution of the control, and the optimiza-
tion problems among others.

Definition 4.1. A state xf ∈ Rn is reachable at
t0 from x0, if there exist a time instant tf > t0,
a switching path σ : [t0, tf ] −→ M , and in-
puts uk : [t0, tf ] −→ Rm, k ∈ M , such that
ϕ(tf , t0, x0, u, σ) = xf .

Definition 4.2. The reachable set of the given switched
linear system at t0 is the set of states which are reach-
able at t0.

Definition 4.3. A switched linear system is said to be
(completely) reachable at t0, if its reachable set at t0 is
Rn.

Let us consider the following matrix sequence.
N0 = (B1 ... Bℓ )
Nk = ( In A1 ... An−1

1 ... Aℓ ... An−1
ℓ ) ·

diag(Nk−1, . . . ,Nk−1),
for k > 0

Remark 4.1. Note that

rkN0 ≤ rkN1 ≤ · · · ≤ rkNn = rkNn+1 = . . .

Proposition 4.1. A necessary and sufficient condition
for reachability of a switched linear system (1) is

rkNn = n

Proposition 4.2. If there exists j ∈ {1, . . . , n} such
that Nj has full rank, then the switched linear system
(1) is reachable.

Remark 4.2. Obviously, when one of the subsystems
(Ak, Bk) of system (1), is reachable, the system is also
reachable.

In our particular setup we analyze the reachability ma-
trix of any subsystem (Ai, Bi) corresponding to the i-
section of the beam


0 0 0 q

EIi
0 0 q

EIi
0

0 q
EIi

0 0
q

EIi
0 0 0


which rank is 4. So the subsystem (Ai, Bi) is reach-
able, then the switched system is reachable.
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Figure 3. Eigenvalues corresponding to the first section

5 Application to a Steel Tower
As an application case of study, a steel tower for wind

turbine generation is considered. For the analysis, the
following parameters are considered P = 11000 · 9.81
which represents the nacelle weight supported by the

tower, E = 210000
N

mm2
corresponding to the steel

material, and I1 = 2.185·106, and I2 = 2.195·106 and
I3 = 2.197 · 106, as the inertia value for the analyzed
tower sections. They are different since the diameter of
the tower is not constant.

5.1 First Section
The first section (lower inertia constant) represents a

section of the wind turbine tower top part. Its inertia is
lower due to the fact that its diameter is smaller.
From Figure 3 and Table 1, it can be observed that the

system under study is marginally stable, since all the
eigenvalues of the system exist on the negative or null
real part of the complex plain. It is worth to say that
in Hamiltonian systems it can be understood as a stable
system.

In order to verify, the results obtained in the steady
state analysis (eigenvalues), some transient simulations
are presented. In Figure 4, it can be seen that all the
variable states are keeping almost constant since the
axis values are really low. Such results reveal that the
system is keeping stable as predicted by the previous
analysis.

5.2 Second Section
The second section (medium inertia constant) repre-

sents a section of the wind turbine tower middle part.
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Figure 4. Impulse-response graphics corresponding to the first sec-
tion
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Table 2. Eigenvalues of the second section
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Figure 5. Eigenvalues corresponding to the second section

Its inertia is in between the maximum and minimum
due to the fact that its diameter is medium.
From Figure 5 and Table 2, it can be seen that the sys-

tem under study is marginally stable, as in the previous
case, since all the eigenvalues of the system do not be-
long to the right hand plane.
Again, some dynamic simulations are done to com-

pare them to the results shown by the eigenvalues. In
Figure 6, can be seen that the system is stable as ex-
pected.
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Figure 6. Impulse-response graphics corresponding to the second
section

5.3 Third Section
The third section (bigger inertia constant) represents a

section of the wind turbine tower lower part. Its inertia
is higher since its tower diameter is bigger.
As in all the previous cases, Figure 7 and Table 3 show

that the system under study is marginally stable, since
all the eigenvalues of the system exist on the negative
or null real part of the complex plain.
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Figure 7. Eigenvalues corresponding to the third section

Finally, the simulations are drawn in Figure 8, where
all the variable states are keeping almost constant, as
occur in all the previous cases.
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Figure 8. Impulse-response graphics corresponding to the first sec-
tion

6 Conclusion
Theoretical model of a wind turbine tower has been

introduced, in this paper. An approximation of such
model to a hamiltonian system has been proposed. It
is worth to remark that wind turbine tower can be un-
derstood as a switched system, which is an important
issue to consider. The proposed model is useful to pre-
dict instability of the system depending on the parame-
ters. Finally, in order to verify the results obtained from
the model, dynamic responses and eigenvalue analysis
have been developed considering real case parameters.
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