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Abstract 
Planar oscillators in polar coordinates have been 

previously studied in integer order systems for many 
years. In this paper, some properties of fractionalized 
dynamic systems in polar coordinates which have 
oscillatory behavior in integer order polar coordinates 
have been investigated via numerical and analytical 
methods. It has been shown that there is angular 
acceleration appeared in such systems, not seen in 
integer order counterparts. Also, the convergence rate 
toward the limit cycle depends on the order of 
fractional derivative. 
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1 Introduction 
The concept of limit cycle first appeared in papers by 

Poincare during early 1890s. In particular, the 
qualitative theories have been widely developed for 
the planar systems. From a topological viewpoint, the 
main result may be the Poincare-Bendixson theorem, 
which has no generalization to higher dimensions. 
This theorem states that any bounded solution not 
tending to a singular point, must necessarily be a 
periodic orbit, or tends to a limit cycle [Wiggins, 
2003]. Let us recall that a limit cycle is an isolated 
periodic solution of a given planar system. The most 
difficult and important problem for planar differential 
systems is the determination of their limit cycles. In 
planar systems, it has been shown that employment of 
polar coordinates simplifies the use of some theorems 
to study the limit cycles [Chavarriga, Giacomini and 
Gine, 1999]. 
Concept of the fractional order operators is an old 

concept in mathematical area, but its application in 
various branches of physics, biology and engineering 
has been recently investigated. Some examples from 

fractional order dynamics can be found in [Podlubny, 
1999; Hifler, 2001] and references therein. Studying 
the dynamical behavior of the fractional order systems 
is one of the latest issues in the recent studies. It has 
been found that the fractional order systems like as 
their integer order counterpart can generate 
oscillations. The oscillations may be regular or non-
regular (chaotic). For instance, in [Ahmad, El-Khazali 
and El-Wakil, 2001] it has been pointed out that limit 
cycle can be generated in the fractional order Wien 
bridge oscillator. Existence of limit cycle for 
fractional Brusselator has been numerically shown in 
[Wang and Li, 2007]. Dynamics of the fractional 
order Van der Pol oscillator has been investigated in 
[Barbosa, Machado, Ferreira and Tar, 2004; Barbosa, 
Machado, Vingare and Calderon, 2007]. There are 
some attempts to find analytical solution for linear 
fractional order oscillators ([Narahari Achar, 
Hanneken and Clarke, 2004]). Also, investigation of 
chaotic behaviors in the fractional order systems has 
been reported in some papers such as [Hartley, 
Lorenzo and Qammer, 1995; Li and Chen, 2004; 
Tavazoei and Haeri, 2007]. 
In this paper, we investigate the fractionalized 

dynamic systems in polar coordinates via studying 
some special samples. The paper is organized as 
follows. In Section 2, some preliminaries of the study 
including the employed numerical method for 
simulations and the definitions in the fractional 
calculus are provided. Section 3 includes three 
different examples of the fractional order systems in 
the polar coordinates and investigations of their 
properties via numerical and analytical methods. The 
paper is concluded in Section 4. 
 

2 Preliminaries 
Fractional calculus: there are several definitions for 

fractional derivative. In this paper we employ the 
definition which was introduced by Caputo in 1969. 



The Caputo fractional derivative Dα  is defined as 
follows, 

( )( ) ( )m mD y x J y xα α−=  (1) 

where 0α >  (but not necessarily Nα ∈ ), :m α= ⎡ ⎤⎢ ⎥  
is the smallest integer larger than α , ( )my  is the 
ordinary thm  derivative of y , and 
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is the Riemann-Liouville integral operator of order 
0β > . 

A fractional differential equation of order nα  is an 
equation such as 

1( , ( ), ( ), , ( )) ( )nF x y x D y x D y x g xαα =  (3) 

with 1 2 nα α α< < < , 1( , , , )nF x y y , ( )g x  
known real function, ( 1, 2, , )kD k nα =  fractional 
operators, and ( )y x  is the unknown function. 
When one works with Caputo's definition of the 

fractional derivatives, only integer order derivatives 
of the function i.e. (0), '(0)y y  ( 1), , (0)my −  are 
appeared in the solution. These data have typically a 
well understood physical meaning and can be 
measured. 
Numerical method: Numerical simulations of this 

paper have been done based on Adams-type predictor-
corrector method introduced in [Diethelm, Ford and 
Freed, 2002]. This method is a generalization of the 
classical Adams-Bashforth-Moulton algorithm. 
 

3 Analysis and Simulation of Polar 
Fractionalized Oscillatory Systems 
In this section, three fractional order systems in polar 

coordinates are studied. First we investigate a simple 
system both numerically and analytically in Example 
1. Systems investigated in Examples 2 and 3 are more 
complex. In Example 2 we study the given system 
based on its numerical simulations results. Moreover, 
the asymptotic response of the system is determined 
analytically. The given system in Example 3 is 
studied only through numerical simulations. 
Example 1: The following equations represent a 

nonlinear system in Cartesian and Polar coordinates. 
2 2

2 2

( 1)

( 1)

x y x x y

y x y x y

⎧ = − − + −⎪
⎨

= − + −⎪⎩
 (4) 

( 1)
1

r r r
θ

= − −⎧
⎨

=⎩
 (5) 

The first state of the polar system has two 
equilibrium points at 0r =  and 1r = . The first point 
corresponds to an unstable focus at the origin. The 
second one represents the polar form of a circle with 
origin as its center and radius one. 1θ =  implies that 
the circle is traversed in an anti clockwise direction 
with constant angular velocity of one. Thus one of the 
system solutions is a closed orbit. If 1r <  then 0r >  
and the trajectories spiral outwards towards the closed 
orbit. If 1r >  then 0r <  and thus the trajectories 

spiral inwards towards the closed orbit (Fig. 1). The 
closed orbit is called a stable limit cycle. 
 

 
Figure 1.   Time evolution of two trajectories for 

system in (5). 

The fractionalized counterpart of the system (5) is as 
follows. 
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, (0) , (0)
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q
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D r r r
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D
θ θ

θ

⎧ = − −⎪ = =⎨
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where q  is a real number such that 0 1q< < , 0r  and 
0θ  are initial values of the states. The equilibrium 

points of the first state of system (6) are * 0r =  and 
* 1r = . The first state of the system can be linearized 

as follows [Ahmed, El-Sayed and El-Saka, 2007] 
*( 2 1)qD r r rδ δ= − +  (7) 

According to Matignon theorem [Matignon, 1996], 
* 0r =  is an unstable and * 1r =  is an asymptotic 

stable equilibrium point for any value of parameter 
0 1q< ≤  (Fig. 2). This implies that * 1r =  is a stable 
limit cycle of the system for any q , i.e. when a 
trajectory starts from any point on this orbit it remains 
on the orbit for ever. 
The exact solution of the differential equation  

( ) 1qD tθ =  is 

0
1( )

( 1)
qt t

q
θ θ= +

Γ +
 (8) 

where (.)Γ  is Euler’s Gamma function [Podlubny, 
1999]. This solution declares that the system has a 
time varying angular velocity, which is a new 
property not seen in its integer order counterpart. The 
angular velocity is calculated as follows 

11( )
( )

qt t
q

ω −=
Γ

 (9) 

Eq. (9) implies that the angular frequency of the 
solution is decreased, as time progresses. Time 
varying angular velocity results in non zero (and also 
time varying) angular acceleration which is also not 
seen in the integer order counterpart system. The 
asymptotic behavior of the Cartesian components of 
the solution is as follows. 



 
Figure 2.   Time evolution of a trajectory for system 

in (6) ( 0.6q = ). 
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Fig. 3 shows the simulation results of system (6). It 
is obvious from the figure that the oscillation periods 
are increased as time progresses. Furthermore, the 
solutions get faster as q  increases. 
 

 
Figure 3a.   Cartesian variable ( )x t  in simulation of 
system (6) (From up to down q  equals 0.6, 0.7, 0.8 

and 0.9). 

Another interesting point here is the form of effects 
that q  has on the oscillating characteristics of the 
fractional order polar system. Fig. 4 illustrates the 
time trajectory of r  for different values of q  and 

similar initial value 0 1.5r = . Apart from the q  value, 
the asymptotic response is always located at 1r = . 
However, enough close to the asymptotic response, 
the convergence rate of the system toward its limit 
cycle is increased as q  increases but for sufficiently 
far values of r  from value 1r = , the convergence 
rate of the system toward the limit cycle is increased 
as q  decreases. 
 

 
Figure 3b.   Cartesian variable ( )y t  in simulation of 
system (6) (From up to down q  equals 0.6, 0.7, 0.8 

and 0.9). 
 

 
Figure 4.   Variation of r  for similar initial value 

0 1.5r =  and different values of q  (Example 1). 

In the system of Example 1, the fractional derivative 
of variable θ  does not relate to variable r  or θ  and 
thus we have a simple dynamical system. A more 
complex system, containing variable r  in the 
fractional derivative of θ , is studied in Example 2. 
Example 2: Let us consider a dynamical system with 

the following relations in the Cartesian and polar 
coordinates respectively. 

2 2

2 2

( 1.5 )( )
(1.5 )( )

x x y x y x y
y x y x y x y

⎧ = − − + +⎪
⎨

= + + − +⎪⎩
 (11) 
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= +⎪⎩
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The fractionalized equations in the polar coordinates 
are as follows. 

3

0 02
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1 1.5

q

q

D r r r
r r
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θ θ

θ

⎧ = −⎪ = =⎨
= +⎪⎩

 (13) 

Similar to the reasoning given in Example 1, 0r =  is 
an unstable and 1r =  is an asymptotic stable 
equilibrium point for any value of q  in (0, 1]. In other 
words, a stable limit cycle exists at 1r =  for any 
value of q  in (0, 1]. Fig. 5 illustrates time evolution 
of a trajectory of the system (13) for 0.6q = . 
 

 
Figure 5.   Time evolution of a trajectory for system 

in (13) ( 0.6q = ). 

For 1r = , ( )tθ  has the following solution 

0
2.5( )

( 1)
qt t

q
θ θ= +

Γ +
 (14) 

This indicates that systems in Examples 1 and 2 have 
similar asymptotic response for the second variable. 
The angular velocity of the system in steady state is 

12.5( )
( )

qt t
q

ω −=
Γ

 (15) 

Similar to Example 1, the angular velocity of the 
system is time varying. For 1r = , The Cartesian 
components ( )x t  and ( )y t  are 

0

0
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( 1)
2.5( ) sin( )

( 1)

q

q

x t t
q

y t t
q

θ

θ

⎧ = +⎪ Γ +⎪
⎨
⎪ = +
⎪ Γ +⎩

 (16) 

Fig. 6 shows the simulation results of system (13). 
These figures confirm that the frequency of Cartesian 
variables is decreased as time progresses. 
Furthermore, the solutions get faster as q  increases. 
Fig. 7 illustrates variation of r  for different values of 
q . As in Example 1, enough close to the limit cycle, 

the system converges toward its limit cycle faster as 
q  increases; but for sufficiently far values of r  from 

1r = , the convergence rate of the system toward the 
limit cycle is increased as q  decreases. 
 

 
Figure 6a.   Cartesian variable ( )x t  in simulation of 

system (13) (From up to down q  equals 0.5, 0.6, 
0.7, 0.8 and 0.9). 

 

 
Figure 6b.   Cartesian variable ( )y t  in simulation of 
system (13)(From up to down q  equals 0.5, 0.6, 0.7, 

0.8 and 0.9). 

The rest of this section is devoted to a more complex 
fractional system in polar coordinates that has not 
simple analytical solution. We will study this example 
system via numerical simulations. 



 
Figure 7.   Variation of r  for similar initial value 

0 1.5r =  and different values of q  (Example 2). 

Example 3: Let us consider the following nonlinear 
system which is represented both in Cartesian and 
polar coordinates. 

2 2

2 2

( 2 )
( 2 )

x x y x x y
y x y y x y

⎧ = − − +⎪
⎨

= + − +⎪⎩
 (17) 

3 2

2 2

(1 0.25sin 2 )
1 0.5( sin sin 2 )

r r r
r

θ

θ θ θ

⎧ = − +⎪
⎨

= +⎪⎩
 (18) 

This system has a limit cycle located in 0.4 5 1r< <  
as shown in Fig. 8. 
 

 
Figure 8.   Time evolution of a trajectory for system 

(18). 

The corresponding fractionalized system in polar 
coordinates is as follows. 

3 2

2 2

0 0

(1 0.25sin 2 )
1 0.5( sin sin 2 )

(0) , (0)

q

q

D r r r
D r

r r

θ

θ θ θ
θ θ

⎧ = − +⎪
⎨

= +⎪⎩
= =

 (19) 

The limit cycle of this more complex system is 
depicted in Fig. 9 for 0.7q = . Simulation results of 
the system are shown in Fig. 10. Similar to the 
previous examples, the angular velocity of the system 
is time varying. The frequency of Cartesian variables 
is decreased as time progresses and the solutions get 
faster as q  increases. 

 
Figure 9.   Time evolution of a trajectory for system 

(19) for 0.7q = . 
 

 
Figure 10a.   Cartesian variable ( )x t  in simulation 

of system (19) (From up to down q  equals 0.5, 0.6, 
0.7, 0.8 and 0.9). 

 

4 Conclusion 
In this paper, the fractionalized systems in polar 
coordinates were investigated through three different 
examples. We showed that in such systems, the 
angular velocity is time varying which in turn results 
in time varying angular acceleration. This property 
does not show up in the integer order counterpart in 
polar coordinates. Also the limit cycle of fractional 
polar systems were investigated and concluded that 
any changes of fractional order q  affects on the 
convergence rate of system trajectories toward the 
limit cycle. Analytical investigation of the properties 
for the complex fractional polar systems, such as the 
one in Example 3, is an ongoing research topic in our 



group. Furthermore, analysis of fractionalized 
oscillatory systems in Cartesian coordinates is another 
topic for future works. Simulations of the paper have 
been performed in MATLAB writing appropriate m-
files required for each example. 
 

 
Figure 10b.   Cartesian variable ( )y t  in simulation 
of system (19) (From up to down q  equals 0.5, 0.6, 

0.7, 0.8 and 0.9). 
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