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Abstract kind of models may be treated either as deterministic or
A class of hybrid systems models introduced by the stochastic that lead to broad possibilities of controlled
author (Valuev, 1996; Valuev, 2005) gives the possibil- processes modelling in the context of planning as well
ity to represent production processes in complex indus- as regulation due to various disturbances, but now we
trial systems such as opencast mines which elementsconcentrate the study on deterministic models only and

change their qualitative states subsequently or cycli- present some general results pertaining to them.

cally. The problem of resource planning for project
scheduling as well as some problems of inventory con-
trol may be treated in the same way. The way of chang-
ing the succession of events and optimality conditions
are presented that show the principal method of finding
the optimum control. In the case of linear models opti-
mality conditions are both necessary and sufficient and
the optimum may be found with a finite method based
on decomposition techniques.

2 General formulation of the problem

An event-switched process is ahstaged process in
which instants of stages ends are moments of the ad-
vent of one or more events (for an arbitrarth stage
the set of these events$gk) C{1,...,L} whereL de-
notes the number of events types). For an arbitkaity
stage, i.e. for the flowing time interval'[k), T'(k+1))
vectors of qualitative staté(k) € Ap(Ap is a finite

set) and controki(k) € R™ are constant and the re-
lationship between the finak{(k) € R™) and initial

Key words .
: . " (z°(k) € R™) state vectors and the stage duratigh)
Hybrld.s.,ystems, control, optimality conditions, de- has a form of difference equations
composition

al (k) = Y (d(k), 2°(k), u(k), t(k)), (1)

1 Introduction. Origin of the model class

The study of production systems show many examples
of processes in which after any qualitative state change,
or an event (such as changes of equipment units work
modes, origination and termination of partial produc- dx(t, k)/dt= f(d(k),z(t, k),u(k)) 2
tion processes, switches of materials flows destination

and so on) the set of relationships between productionWith the initial conditionst=0, (0, k) = z°(k). For
system variables alter. Events subdivide the entire pro-the s-th event type there are the sets of components of
cess period into stages; the succession of events, or dxs, Ips Of z(t, k), d(k) (the latter forming vectors
processscenarig within a given period is fixed neither  2*)(t, k), d*) (k), respectively), so thalty N Ix, =

in order nor in the number and depends on the process/ps' N Ips = 0 for s" # s andi(s) € Ix exists for
control. which

The general formulation of the new models class is

given in the paper. These models give the possibility fisy(d(k),z(t, k), u(k)) > fmin > 0.  (3)
to apply exact optimization techniques for determina-
tion of values of some parameters that earlier might be The conditions for the stage termination are

appointed only by experts and to embrace in the sole

problem statement a lot of plan problem variants that rY (d@(k), ') (k) = 2}, (k) — 250

traditionally may be regarded only separately. Such Zi((i)(k)) _ 0.5 € S(k), i(s) 4)

whereY (d(k), °(k), u(k), t) denotes the solution of
the Cauchy problem for the ODE system



has the minimum value. We assume that for every

d € Ap, 2’ € R", ' € UR(d’) (where the con-

stantA > 0) all the functionsf;(d’, 2, «’, r§ (d', '),

r¥ (d'®),2'*)) are determined and continuously dif-

ferentiated with respect to’, v’ and for all their first

resulting in no events within the stage. The values of partial derivatives the generalized Lipschitz condition

some components of both state vectors change as a rer(y/) — g(y)| < K||y' — y||” is valid (herey =/, u’)

sult of the above events, so that: and the constant&” > 0, 3 €(0, 1] do not depend on a
functiong(y)).

i ([d®(k), 2" (k) < 0,5 ¢ S(k), ()

di(k +1) = D;s(d®)(k)),i € Ips, s € S(k), } ©)
di(k +1) = di(k),i & Ips, s € S(k), 3 Process scenario and other representations of
the problem
We assume further that the modé&)+(11) satisfies
some general properties (for the base model they are
2k +1) = X;5(d®(k), x* ®)(k)), obviously satisfied and additional form of models rela-
tionships listed below are likely not to violate them).

1€ Ixs, 5 € 5(k), (7) Condition 1. For anyd(k) € Ap the setly(d(k)) of
0 . , u(k) satisfying ) is non-empty and bounded.
zi (k+1) = 27 (k),i & Ixs,s € S(k). Condition 2. For all thed € Ap,z’ €
Rt > 0, W € Und) =
Equations6)—(7) may be denoted as = {u" € R™ | r{(d';u") < A,j € Ji(d')} where

A > 0 is a constant, the functions;(d’, ', v/, t'),
r¥(d',u'), v} («') are defined, continuously differ-
entiated with respect ta’, «’/, ¢ and all their ¢
order partial derivatives satisfy Lipschitz condition
having the form|g(v') — g(y)| < K|y’ — y|| where
The number of the process stagéss determined from vy = (z,u,t),y' = (2/,u/,t') and K > 0.

the process termination condition Condition 3. For allthes =1, ..., L,d' € Ap,
1)
T(N+1)=T(0)+T1. (8) v o
Tigs) (@7 (1)) <05 (12)
Constraints on the process have two types: the con- _
7”325) (Y(d', 2’,v, t)) rises monotonously with respect

tot;
rg(d(khu(k‘)) <0,j€ Jl(d(k)%} @  3foralls’ C{1,..., L} forwhichs e ' and all
rj (d(k),u(k)) = 0,5 € J2(d(k)), o' € R" satisfyingr), (2') = 0 the inequality is valid

and the constraints for a definite event (including ter-
minal constraints) TXS)(X(S/v d',z') =1y < 0; (13)

rY (z'(k)) £ 0,5 € Ko(d(k)),
(@l (k) < 0.5 € Ky (d(k), S(F)). } 0 Ayforall s’ s ¢ 5 andalle’ € B

It is supposed that for any(k) € Ap the setly(d(k)) e (XS, d ') = r) (). (14)
of u(k) satisfying |9) is non-empty and bounded. The
problem consists in the determination of the process
scenarioS = (S(1),...,S(N)) and control (i.e., the
succession = (v(1),...,v(N)) of vectorsv(k) =
(u(k), t(k)) with trajectories in continuous- and
discrete-valued state variablds= (d(1),...,d(N)),

r = (2°(1),2(1),...,2°(N),z'(N)) corresponding

to S, v due to I1),(4)—(7) so that restrictions8)—(10)

are satisfied and the target functional

Each possible process of the project fulfilment is char-
acterized with the contral, or a succession of vectors
v(k)=(u1(k),...,um(k),t(k)), the scenario, or a suc-
cession of set§ = (S(1),...,S(N)), the trajectory

x = (zo(1)x1(1),...,2z0(N),21(N)) and the discrete
trajectoryd = (d(1),...,d(N)). According to 6) the
discrete trajectory is the function of the scenario and
according to'1) and [7) the trajectory is the function

of the scenario and the control. Subdividing the whole
Fo(z*(N)). (11) set of possible processes into the sets of processes with



the definite scenario we determifg(S) as the set of
all possiblev whereu(k) € Uy(d(k)) for any k that
generates the trajectory satisfying restrictiods (5),
(8)—(10). Conditions 8), (12)—(14) guarantee that for
allthes =1,..., Lk =1,..., Ny, (2°(k)) <0, s0
from T%S)(Y(d(k),xo(k),u(k),t(k))) =0,s e S(k),
we conclude that the obligatory relationshig) > 0
takes place.

But V,(S) is not a closed set and for* =
limv™, v e V;(S), we can say that for the cor-

respondinge™ ) (z*'(k)) < 0, s ¢ S(k). So we
determine another modél/; with the set of relation-
ships @)—(3), (6)—(10) and

e (@ (k) < 0,5 ¢ S(k). (15)

Analogously for the modeM; we conclude formally
that for anyk ¢(k) > 0. The values ofi(k) for stages
with ¢(k)=0 do not affect the sequencedf(k), =' (k)
for stages witht(k) > 0. So for any control corre-
sponding to the scenario havinggm S(k) > 1 for a

certain k we can use other scenario representations.

andua (k') = v € Ug(D(S(K' — 1),d(k' — 1)),
ta(k') = e for the ¥ aim andus (k') = u(k'),
t4(k")=0 for the second aim.

The set of the model restrictions for a given scenario
may be represented in the following general form:

Fi(v,8) <0, j € L(S),
(17)
Fj(v, S) =0, j € I,(S).

The target functional is treated dg(v,S) as well.
Let us denote (for a feasible controlande > 0)
the set ofe—active restrictions for any; C I;(S) as
Jie(v, S)={j € Ji | Fj(v, S) > —e}. We define
I.(v,S) as (v, S) U I(S) and introduce obvious
notation!Y (k, S) and IV (k, S) = Ji(d(k)). We de-
note forJ C I;(S) U I(S), v' € V5(S) F(v',S,J)
as the vector of; (v, S), j € J, andb;(k;v’,S) =
Vo Fj(v',S), Bj(v', S) as the vector resulting from
concatenation of all thé;(k;v',S), k # k', and
B(v', S, J) the matrix which rows aré;(v', S), j €
J. We suppose thaB; (v', S), j € J, are linearly inde-

Both properties are used in the iterative search of the Pendent thatis guaranteed with the following

optimum scenario.

Other representation of the mode, is the modelM,
determined with the set of relationshifik)«(4), (6)—
(10) and

t(k) >0 (16)

fork =1,..., N and @2) for k = N. For M; and M,
V1(S) andV;(S) are determined analogously#(S).

Condition 4(regularity condition) .

1) for an arbitraryv € V,(S) vectorsFj, (v, S), j €
Iy(v, S), are linearly independent;

2) for an arbitrary u(k) satisfying ©) vectors
Fj (d(k),u(k)), j € Jio(d(k)), are linearly indepen-
dent.

If the Condition 4 is valid therzy exists, such that
forany0 < e < g it is valid not only for O-active
restrictions but foe-active ones as well.

Let C(v',S,J) be adim(J) x dim(J) subma-

The equivalence of both representation is asserted bytrix of B(v’, S, J) with the minimum inverse matrix

the following lemma.
Lemma 1. V1 (S) = Va(S).

For a given scenario the set of the moddl, re-

lationships defines the optimization problem for a

discrete-time process with known optimality condi-

tions (Ashchepkov, 1985; Boltyanski, 1973; Propoy,
1973) and efficient numerical methods including
(Valuev, 1990; Valuev, 1987). However, we are inter-
ested in the project optimization regardless of events

succession.

4 Change of the process scenario and necessary

optimality conditions
So we consider
to the scenario

two aims related
change for a given
v € V5(S): first, to separate two simultaneous
events setsS; = S(K — 1) andSy = S(k') for
which ¢(k') = 0 with a short stage and second, to
make simultaneous two events séts = S(k' — 1)
and S, = S(k’) initially separated with a short stage.
To reach both aims we seek fery, € V5(S) for
which va(k) =v(k) + edv(k) + O(?), k # K

norm. The Condition 4 yields;,, > 0 for which
[(CW', S, )| < ciny forall v’ € Va(S), J C
I.(v,5), 0 <e < e

For both aims 4 (k') satisfy the respective restrictions
(9). All other restrictions17) will be satisfied provided
that||dv|| < ny ifforae < ey/ny acontrolv4 satis-
fies the equations set for the given

Gj(va,S) = Fj(va, S) — Fj(v,S) =0,
jell=1.(v,5)\ Jic(d(k")).

We propose a Newton-like method of its solution with
initial v(©) wherev(®) (k) = v(k), k # k', vO(F') =
va (k") and recursive relationships

B®, 8, 1) (") — o)) = —G(v"), 5, 1) (18)

from which the vecton©+1 of v("+1) components
corresponding to columns af' may be determined
asv®) — (C(v™, 8 1)~ 1G(v™, S, 1), the rest
components being zeros that yields the unique solu-
tion v("*1 . Complying C (v, S, 1))~ with zero



columns to the dim{) x M matrix Q(v("), S, I') we
represent18) as

VD = 4 _ Q). 8, I)G(w ™, 8, I')

and the iteration proces$8) converges superlinearly if
e is sufficiently small and|(C (v, S, I)) Y| < Cin
for all r.

To determineFj, (v, S) we can use the formula
(Propoy, 1973) foy € {0} U IY (k;, S)

OF; = (pj(S,K), o' (K'))+
& (19)

> (P)(S,k), Yo (d(k), 2°(k), v(k))dv(k))
k=k'+1

where ky, = N and for conjugate variables
PI(S, k"), pj(S, k") we have:

qo0(v, S) = po(S, k') —
Z QJ(U(Oa aI)

JeIY (v,9)

form of the model enables to perform non-local opti-
mization with the use of special optimality conditions
and iteration method of branch-and-bound type. In
this paper additional opportunities resulting from lin-
ear form of relationships are studied. It was noticed in
(Valuev, 2007) that the process may have diffesas-
narios, i.e., sequenceb = (d(1),...,d(N)) of quali-
tative states of the project. According to this approach
the search of the optimum solution is based on three
types of calculations: optimization within a given sce-
nario, testing the present scenario optimality and shift-
ing to a better adjacent scenario.

For a given scenario the optimum schedule is found
from dynamic linear programming problem (DLP):

T(N) — min; (22)
T0)=0; T(k)=T(k-—1)+t(k)
k=1,...,N; 23)
z(0) =0; (k) = zi(k — 1) + yi(k)
Umin zt(k) S yz(k) S umaxit(k)a
i€ Ii(d(k)); yi(k) = 0,i ¢ L(d(k));
(24)
e; yl(k) <wugjt(k),j=1,...,m;
t(k) > 0;

From 21) we may come to the necessary optimality First of all, DLP problem is a particular case of a lin-

condition formulated in the (Valuev, 2005), namely

Theorem 1. If the pair (S, v € V,(S)) gives the
solution of the problem[1)—(11) and for somek’
dim(S(kK" — 1)) > 1 then for anySy4, Sa(k) =
= Sk), k < K —1, Sa(k — 1) U Sa(k') =
Sk — 1),

Sk’ — 1) and Su(k) =
k = kK +1,...,N + 1, there exists a vector
qoo(v, Sa) for which for anyu 4 (k') € Ug(da(K'))

(qoo(v, Sa),Yi(d(E),z°(K"), ua(k'),0)) > 0.

5 Resource planning as a problem of a transform-
ing process optimization

ear programming problem, so its exact solution may be
found with a finite method. Besides, there are decom-
position methods that enhance the efficiency of opti-
mum search, e.g. (Krivonozhlet al, 1987). All of
these method guarantee reaching the optimum (within
a given scenario). If more than one work terminates at
the end of some stage, then other scenario representa-
tions of the project schedule exist and it is necessary to
test whether the same schedule is optimal within these
adjacent scenarios.

6 Treating the problem with the use of a decompo-
sition scheme

The method proposed here originates from author’s

generalization (Valuev, 1987) of the computational

The paper (Valuev, 2007) introduced the representa-construction proposed by Boltyanski (Boltyanski,
tion of the problem in question as an optimization prob- 1973) to simplify optimality conditions for discrete-

lem for a hybrid system (Branickgt al, 1998); this

time processes.



Letv € V(D), Ko(v,D) =
foranyk = 1,...,N P(k) C
according to the conditions:

(). Let us determine
IT(k, D) andNM(k)

dlm( Q(U k, D) @] Ivg(k' D) @] PT(]C)) <n+1,
L(k) = Ip(k, D)\ Pp(k), Ni, = dim(L(1)) + ... +
dim(L(N)), Nag(k) < n+ 1 — dim(Iy10(v, k, D)
Ulyo k,D) UPT(]C)),

Nus(k) = Nar(1) + ... + Nag(k) > Nps(k) =

dim L(l)) .+ dim(L(N)),NMs(N) = NLS(N)7
M( ) {N]\{S( 1)—|—1 .,N]ws(k‘)}.

We can determinen(+ 1) x (n+ 1) matricesC'(k) and

a set of linearly independent vectqy® (k) € R**!,

m € M (k), from the following systems of linear equa-
tions:

b%;(k, D) + by,;(k, D)C(k) = 0,
b, (k, D)g'(k) = 0, 1 € M(k),

1 E IVl()(’U, k, D) U Ivg(k7 D) U PT(k‘>

(26)

It is shown (Valuev, 1987) for a more general model
than 22)—(25) that any feasible directionv may be
defined stage-wise in such a way:

+ > g

leM (k)

ov(k) = dov(k) + , (27)

where the following condition is valid for evedyv (k)

by (k, D)bgu(k) <0, i € Iy1o(k, D),
L. (k, D)dou (k) (28)

i € Iya(k, D) U

= O’

Pr(k)),
and the below conditions on variables, [ € M(k),
are valid. Note that for anyz € R"*! and anyy;, | €

M(k), we have ford F; = F;(v, D) — F;(v + v, D),
1€ IVl()(U, k?, D) ] Ivg(k‘, D) U PT(]C), the formula

(29)

Using the following conjugate equations for the target
functional and restrictions from (k):

PV +1) = (0,...,0,1)
DOk) = (BE+ C)pO(k+ 1),k =N,...,1; G
pi(k'+1)=0, kK =k+2,...,N,

pi(k+1) =0bg,(k, D),
(31)
p'(K) = (E+CHE)p' (K +1),

and lettingLs = L(1)... U L(N) we get the following
formulas for their variations:

5F(v) = % (i (k= 1), Bou(k) +
| (32)
> mg( )), i€ {0}ULs.
1eM (k)

The relationships to determine all valuesof [ €
M(k),k=1,...,N,are

§Fy(v) =0, i€ Lg. (33)

With the formulas/82) they are reduced to a system of
linear equations. Le®;; = (p'(k +1), g'(k)),l € Lsg,
le M(k),Q=G™!, then

S Qu S (i (k4 1), Sov(k)),

=
i€Lg k=1
le M(k),k=1,.., N,

(34)

With the substitution of34) to (32) we have the final
expression fob Fy(v)

N
dFy(v, D) kzl + 1), 60v(k)),
(% Qe (P°(K + 1),gl(k’))>
k'=1 leM (k')
=p(k+1)+ > Qi(k)p'(k+1).
1€L5

(39)

The efficiency of the decomposition scheme depends
mainly on its dimension, i.eNys(N); in practice, as
arule,Npg(V) is much less than the dimensionof

If Ko(v,D) # 0, then the controb’ received from
v by cancelling stages of zero duration (and hence
v(k) = 0) and joiningIr (k) to It (k — 1) corresponds
to another scenari®’. Forv’ € V'(D’) the optimality
criterion of the Theorem 2 may be tested. It is possible,
however, to test the optimality of within the original
scenario and other adjacent scenarios with the below
optimality conditions.

Other scenario representations exist for the process
with v € V(D) for which Ky (v, D) = ) andK; (D) =

{k| dim(Ir(k)) > 1} # 0. We treat the scenarid’
as adjacent td if a set of stageg(’ C K;(D) ex-

ists for which everyk € K’ (for D) corresponds in
D' to the succession of stages that we numerate with
compound indices(k,1) or k,(k,2),..., (k,n(k)),
these stages terminating with sets of finished works
Ip(k,1),..., Ir(k,n(k)) whereIr(k) = Ir(k,1) U

..U Ip(k,n(k)), the rest stagek ¢ K’ having the
samelr (k). Obviouslyy' € V/(D’), if v'(k) = v(k),
k=1,...,N,v(k,i)=0,ke K',i=1,...,n(k);
we denoteyrr(v, D, D’) such av’.

Let v € V(D) be the solution of the problem
(22)—(25). To establish whether the adjacent scenario



D'’ is not better thanD, it is necessary to compare
Fy(vrr(v,D,D"), D') = Fy(v, D) with Fy(v', D)
for near controlsv’ € V(D’) with at least one
v'(k,i) # 0. To construct such a’ we use the fol-
lowing variant of the formula2?7):

dv(k) = C(k) <5z(l<:) + ng) U(k,r)) +

Zl) € M(k)ug'.

(36)

We have ford F;(v', D’), i € Lp(k), k = 1,...,N,
and foréz(k + 1), k € K’, the same expression as for
the scenarid with

Sov(k) = (E + C(k)) Y v(k,r).

r=1

(37)

Let us determingy, [ € M(k), k =1,... N, from (34)
as for the scenari® with éyv(k)=0 for k ¢ K’, using
the formulal87) for k£ € K'. Then we have from3E)

&

n(

SFo(v') = > [a(k+1),(E+C(k))

keK'’ r

)
v(k,r)
1

Theorem 2. Let the pair (D,v € V(D)) for which
Ki(D) # 0 and let Ky(v, D) = () be the solution
of the problem22)—(25). The optimum values of the
problem @2)—(25) for all adjacent scenarios satisfy
F*(D") > F*(D) = Fy(v, D) if and only if for any
k € Ky(D),Ir1(k) C Ir(k), IT1(k) # 0, for any
o' = (0yy, ..., 0y, 1) satisfying

Umin 4 S 5y; § Umax i, (RS Il(d(kaQ))a
5yz/‘ =0,1 ¢ Il(d(k72))a
(38)

Z 5yi§uRjaj:177m7
i€lR;

whered(k,2) = D, (d(k), IT1(k)), the inequality is
valid

SFo(v) = (g(k + 1), (E + C(k))s0) > 0. (39)

7 Principal construction of the computational
method

linear equationsA6) and 33), some linear transforma-
tions and testing optimality conditions by solution of
linear programming problems, the latter being 1) min-
imization of g7 (k + 1)dpv(k) under constraints2g)
and|dov; (k)| <1,i =1,...,n;and 2) minimization of
q¥'(k +1)(E + C(k))dv" under constraints3g). The
dimension {+1 andn variables, respectively) and the
structure of both problems are very similar, no singu-
larity being displayed.

The author’s hypothesis is that in the setiofthere

are no local minima. It means thathf(D) is less that
F(D’) for all adjacent scenaria®’ it gives the global
minimum. No contradictions with this hypothesis was
found, some evidence is found in particular cases, but
its formal substantiation is not found as well. Ifitis al-
ways true it is not necessary to build a solution tree,
because in that case every minimizing succession of
scenarios lead to the globally optimum solution.
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