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Abstract
The retina is a multilayer structure that perceives and

transmits visual stimuli to the brain via the optic nerve;
however, its complex structure makes it vulnerable to
damage. Optical coherence tomography (OCT) is the
gold standard for diagnosing retinal pathologies. This
study aimed to develop a deep learning model for the
classification of retinal pathologies based on OCT data.
The study design included the use of transfer learning
and training a model with a ResNet-50 architecture on
three open datasets containing over 110.000 OCT im-
ages and 10 retinal condition classes, including normal
and 10 pathological conditions. As a result, the model
demonstrated a high classification accuracy of 95 %.
Thus, transfer learning and significant dataset expansion
provide high classification model accuracy. The study
also highlights that open access to data significantly im-
pacts the development of artificial intelligence technolo-
gies in healthcare.
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1 Introduction
The retina is a thin, multilayered structure responsible
for receiving, modulating, and transmitting visual stim-
uli from the external world to the optic nerve and, ulti-
mately, to the visual cortex of the brain [Herzlich et al.,
2010]. The complex structure of the retina makes it
highly susceptible to various types of damage. In in-

dividuals aged 60 to 95 years, the prevalence of reti-
nal diseases is 52.37 %, with the most common being
age-related macular degeneration (AMD) (35.43 %), fol-
lowed by hypertensive retinopathy (4.35 %), epiretinal
membrane (ERM) (3.66 %), branch retinal vein occlu-
sion (BRVO) (2.90%), and diabetic retinopathy (DR)
(2.15%) [Thapa et al., 2020]. According to the World
Health Organization, 80% of all cases of vision impair-
ment can be prevented or treated [GBD Collaborators,
2021]. This statistic underscores the pressing need for
the development of preventive measures to address reti-
nal diseases, including effective methods for their early
visualization.
Optical coherence tomography (OCT) is the gold stan-
dard for diagnosing most retinal diseases [Turbert,
2023], enabling cross-sectional imaging of the retina
with micron-level resolution, providing high detail and
accuracy for visualizing various structures and patholo-
gies. The resulting images can be evaluated both quali-
tatively and quantitatively. Since its inception, OCT has
undergone significant advancements, improving image
quality, speed, and resolution [Kharousi et al., 2013].
However, the processes of analyzing and interpreting
OCT data remain highly complex. One of the most com-
mon challenges in interpretation is the failure to identify
subtle and early signs of disease or rare pathologies. Fur-
thermore, analyzing such medical data is complicated by
the need not only to interpret images but also to describe
the results, which can take up to 50% of the time. Mean-
while, there is a global shortage of highly qualified spe-
cialists in ophthalmology, not only in Russia but world-
wide [Neroev, 2014]. The large number of patients, cou-
pled with a shortage of medical personnel, leads to over-
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work and increased errors in interpreting medical exam-
inations by physicians [Hussain and Oestreicher, 2018].
Recent advances in artificial intelligence (AI) have
made it possible to analyze various types of medical
data—from EEG spectra to high-resolution OCT im-
ages—demonstrating the universality and adaptability of
modern deep learning approaches [Plotnikov, 2024; Ker-
many et al., 2018]. According to the literature, automat-
ing the identification of pathologies in OCT images us-
ing artificial intelligence technologies not only acceler-
ates the diagnostic process but also demonstrates accu-
racy comparable to that of an ophthalmologist [Kermany
et al., 2018]. Thus, the development and implementation
of such methods in clinical practice could facilitate early
detection of symptoms, enabling treatment to begin at
earlier stages. Initial studies related to the automation
of OCT data analysis using artificial intelligence tech-
nologies involved the development of models based on
manual feature extraction and their classification [Chen
et al., 2020; Dalal and Triggs, 2005; Rong et al., 2014].
However, this approach is labor-intensive and not al-
ways accurate. At the same time, deep learning-based
methods can automatically extract features from data,
significantly simplifying the process [Larochkin et al.,
2025]. Several studies have utilized neural network ar-
chitectures such as VGG-16, AlexNet, and GoogleNet
for automatic feature extraction and their subsequent
use in training classifiers like kNN (k-Nearest Neigh-
bors), Random Forest, and SVM (Support Vector Ma-
chine) [Awais et al., 2017; Perdomo et al., 2018; Chan
et al., 2018; Khan and Khan, 2024]. These models are
trained on large datasets and can identify complex re-
lationships that are difficult to detect manually, making
them especially effective for classification tasks. How-
ever, the successful application of such models largely
depends on the availability of sufficient data. Today,
there are many open datasets obtained via OCT that
are also used to accelerate model development. Umer
Sadiq Khan and colleagues trained a model with a con-
catenation layer for combining weights from two net-
works with ResNet50 and EfficientNetB0 architectures
on the OCT2017 dataset comprising 84,452 OCT images
[Mathews and Anzar, 2022]. As a result, the accuracy of
detecting four retinal pathologies was 97.50%. In an-
other study, a comparison of ResNet50, ResNet50V2,
DenseNet121, and DenseNet169, trained on the same
dataset (expanded to 30,964 images through augmen-
tation), achieved accuracies of 97.9%, 96.9%, 98.8%,
and 99.4%, respectively [Maurya et al., 2024]. The use
of ensemble classification methods combining the re-
sults of models based on architectures such as Xception,
NASNetMobile, MobileNet-V1, and EfficientNet-B3 re-
sulted in an accuracy of 99.80% on the OCT2017 dataset
[Saini et al., 2023].
It is worth noting that several strategies can be used
when developing deep machine learning models for spe-
cialized tasks. Creating custom architectures involves
designing new neural network architectures tailored to

the unique requirements and characteristics of a specific
task. For example, DilipKumar Jang Bahadur Saini and
colleagues developed an LCNN model that uses lesion
attention modules in OCT images to improve the accu-
racy of disease detection [Fang et al., 2022]. In the study
by Leyuan Fang, a described architecture incorporated
a Siamese neural network based on ResNet18 (SSPSF)
with disease detection accuracies of 97.74% and 98.94%
on the RETOUCH and AI Challenger open datasets, re-
spectively [Haloi, 2018]. Custom models are advanta-
geous in the short term, but in the long term and when
expanding the scope of tasks or retraining on data of a
different modality, such models lack robustness and pre-
dictability. Meanwhile, well-known architectures can
be fine-tuned on specialized data related to a specific
task. An example is the use of networks like VGG16,
Inception V3, or ResNet for medical image classifica-
tion, where the model is pre-trained on large datasets
such as ImageNet and then fine-tuned on medical images
to recognize specific pathologies [Errabih et al., 2022;
Kermany et al., 2018; Kulyabin et al., 2024; Aksen-
ova et al., 2023]. Thus, transfer learning not only saves
time and computational resources but also enhances the
model’s generalization capabilities on medical images.
At the previous stages of research, we developed and
tested a segmentation model using clinical data to deter-
mine the type and evaluate the quantitative parameters of
biomarkers in OCT images [Aksenova et al., 2024]. Ad-
ditionally, we selected the neural network architecture
for a model to classify retinal diseases based on OCT
images [Gholami et al., 2018]. In the present study, we
developed a deep machine learning model for the clas-
sification of retinal diseases using transfer learning and
open datasets.

2 Materials and methods
In this study, we used open datasets such as OCTDL,

OCTID, and OCT2017. All datasets included images
obtained using optical coherence tomography and rep-
resented B-scans of the retina—linear cross-sectional
slices obtained by overlaying consecutive slices, called
A-scans. The OCTDL dataset contains more than
2000 OCT images annotated for diseases such as age-
related macular degeneration (AMD), diabetic macu-
lar edema (DME), epiretinal membrane (ERM), normal
(NO), branch retinal vein occlusion (RVO), and vitre-
oretinal dystrophy (VID) [Kulyabin et al., 2024]. The
data were obtained and annotated at Friedrich-Alexander
University Erlangen-Nürnberg, Ural Federal University
named after the First President of Russia B. N. Yeltsin,
and Ural State Medical University. The OCTID dataset
is a database of optical coherence tomography images
containing more than 500 images grouped by condi-
tions such as normal (NO), age-related macular degen-
eration (AMD), central serous retinopathy (CSR), and
diabetic retinopathy (DR) [Kermany et al., 2018]. The
OCT2017 dataset consists of OCT images and chest X-
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rays. The OCT images are classified into four groups:
choroidal neovascularization (CNV), diabetic macular
edema (DME), drusen (Drusen), and normal images
(NO). The data were obtained and annotated at the Uni-
versity of California, San Diego [He et al., 2015]. It
is worth noting that all images were acquired using dif-
ferent devices—Optovue Avanti RTVue XR, Cirrus HD-
OCT machine by Carl Zeiss Meditec, Inc. (Dublin, CA),
and Spectralis OCT by Heidelberg Engineering (Ger-
many). Examples of the images are shown in Figure 1.

Figure 1. Examples of retinal pathologies from three open datasets:
OCTDL, OCTID, and OCT2017.

Table 1 provides a description of the class distribution
within the datasets. Before training, the datasets were di-
vided into training, validation, and test sets in a 65/15/20
ratio. In each case, the images were randomly assigned
to the respective sets. Thus, the test datasets for the three
datasets contained different images.

Table 1. Class distribution in the dataset by disease types

Class OCTDL OCTID OCT2017

AMD 1231 0 0

DME 147 0 11349

ERM 155 0 0

NO 332 206 51140

RVO 101 0 0

VID 76 0 0

CSR 0 102 0

DR 0 110 0

CNV 0 0 37206

Drusen 0 0 8617

Sum 2042 418 108312

Before training the model, we performed preprocess-

ing and data augmentation. Preprocessing included re-
sizing the images to 224x224 pixels. The following aug-
mentation methods were applied: random cropping, hor-
izontal and vertical flipping, rotation, shifting, and Gaus-
sian blur.
To develop a classification model for OCT data related to
various diseases, we used a deep neural network with a
ResNet50 architecture [Krizhevsky et al., 2017]. This
architecture, which was pre-trained on the large Ima-
geNet dataset [Fang et al., 2022], consists of 50 layers
organized into 5 blocks, each containing a set of residual
blocks (Figure 2). Convolutional layers are the primary
components of the ResNet-50 architecture. They apply a
convolution operation to the input image to extract spa-
tial features.

Let Xl be the input representation at layer l. The ap-
plication of a convolutional layer followed by ReLU ac-
tivation can be written as follows:

Xl+1 = ReLU(Xl ∗Wl + bl) (1)

where:

Wl — trainable filters (weights) of layer l;
bl — bias of layer l;
∗ — convolution operation;
ReLU(z) — activation function defined as
max(0, z).

Subsampling layers (max pooling) reduce the dimen-
sionality of the input data from the convolutional layer
while preserving important features. This helps to de-
crease the number of parameters, reduce computational
costs, and retain significant features. The subsampling
process can be expressed as follows:

Xpooled(i, j) = max
(m,n)∈P(i,j)

Xl(m,n) (2)

where:

P(i, j) — the receptive field for the position (i, j)
in the input representation Xl;
Xpooled(i, j) — the result of the max pooling oper-
ation.

Residual blocks consist of three convolutional layers,
each accompanied by a batch normalization layer and a
ReLU activation function. The three layers are 1×1, 3×3,
and 1×1 convolutions, where the 1×1 layers are respon-
sible for reducing and subsequently restoring (recover-
ing) the dimensions, leaving the 3×3 layer as the bottle-
neck with smaller input/output dimensions. The residual
block can be described as follows:

Xout = ReLU(F(Xin) +Xin) (3)

where:
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Xin — the input tensor for the residual block;
F(Xin) — the result of three sequential convolu-
tions (1×1, 3×3, and 1×1) with normalization and
ReLU activation.

The output of the third convolutional layer is added to
the input of the residual block, and the resulting tensor
is passed through the ReLU activation function again
using ”skip connections” (or ”shortcut connections”).
Skip connections are special connections in neural net-
works that allow information to bypass certain layers
and be passed directly to later processing stages. In the
ResNet-50 architecture, there are two types of residual
blocks: convolutional blocks and identity blocks (Figure
2). These blocks have a similar structure but differ in
how they use ”skip connections.” The identity block is
used when the input and output tensors have the same
dimensions. The convolutional block is used when the
dimensions of the tensors need to be changed. This is
achieved by using a 1×1 convolutional layer in the ”skip
connection,” which adjusts the dimensions of the input
tensor to match the dimensions of the output tensor. The
final stage of the ResNet50 architecture is the average
pooling layer, which reduces the output features to a
single vector. Let the output tensor after the last con-
volutional block have dimensions H×W×C. The average
pooling operation transforms it into a vector Xpooled with
dimensions 1× 1× C:

Xpooled(c) =
1

H ×W

H∑
i=1

W∑
j=1

X(i, j, c) (4)

This vector is then passed to a 10-dimensional fully
connected layer (fc), which transforms it into 10 output
values corresponding to the number of classes:

z = Wfc ·Xpooled + bfc (5)

where:

Wfc — weight matrix of size 10× C;
bfc — bias vector of size 10;
z — output vector of size 10, where each component
corresponds to one of the 10 classes.

These values are then passed through a softmax func-
tion, which converts them into probabilities for each
class:

ŷi =
exp(zi)∑10
j=1 exp(zj)

(6)

This ensures the final prediction of the model.

Figure 2. Overview of the ResNet-50 architecture. (A) Transforma-
tion of the original OCT images and an overview of the overall struc-
ture of ResNet-50, where the symbols ”x2”, ”x3”, ”x5” indicate the
number of repetitions of the corresponding blocks. (B) Structure of the
convolutional block (conv block). (C) Structure of the identity block
(identity block).

To evaluate the accuracy of the models, the following
metrics were measured: Accuracy (7), Precision (8), Re-
call (9), F1 Score (10), and AUC-ROC.

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

where TP — True Positives, TN — True Negatives, FP
— False Positives, FN — False Negatives.

F1 Score = 2× Precision × Recall
Precision + Recall

(10)

AUC-ROC (Area Under the ROC Curve) is a mea-
sure of a model’s ability to distinguish between classes.
The ROC curve (Receiver Operating Characteristic) is a
graph that shows the performance of the model across all
classification thresholds. The AUC-ROC is calculated as
the area under the ROC curve, which is built based on
various values of sensitivity (Recall) and specificity (1 -
False Positive Rate). These metrics were calculated for
each class using the ”one vs. rest” method. To evalu-
ate metrics for the entire dataset, the mean value of the
obtained scores was calculated.
For training the models, the early stopping algorithm
was used. Early stopping occurred when the Accuracy
metric, measured using the validation dataset, reached
its maximum value.
The training and evaluation of the models were
conducted using the PyTorch deep learning frame-
work (version 2.1.1) and Yandex Cloud resources
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(https://yandex.cloud/ru/docs/billing/concepts/bonus-
account), which were provided as part of the Yandex
Cloud Boost program. The configuration included
vCPUs on the Intel Broadwell platform and NVIDIA®
Tesla® V100 GPUs. The developed model was in-
tegrated with the large language model (LLM) using
containerization technologies and APIs to enable
seamless interaction and automation. This integration
facilitated the creation of a chatbot application designed
to provide clinicians with efficient access to diagnostic
insights and decision support for OCT image analysis.

3 Results
In this study, the ResNet-50 model was trained on open

datasets OCTDL, OCTID, and OCT2017. The study de-
sign is presented in Figure 3.

Figure 3. Study Design.

To evaluate the effectiveness of the models, accuracy
metrics (1–4) and AUC-ROC were used. Table 2 pro-
vides the metric values measured for the entire dataset
across the three models.
Table 2. Quantitative performance metrics of machine
learning models. Data1: Dataset with images from the
open OCTDL dataset; Data2: Dataset with images from
the combined open OCTDL and OCTID datasets; Data3:
Dataset with images from the combined open OCTDL,
OCTID, and OCT2017 datasets.

Table 2. Quantitative performance metrics of machine learning mod-
els. Data1: Dataset with images from the open OCTDL dataset;
Data2: Dataset with images from the combined open OCTDL and OC-
TID datasets; Data3: Dataset with images from the combined open
OCTDL, OCTID, and OCT2017 datasets.

Dataset Accuracy F1 Score Precision Recall AUCROC Ntest

Data1 0.93 0.89 0.88 0.91 0.99 420

Data2 0.9326 0.8821 0.93 0.85 0.9930 538

Data3 0.9535 0.8787 0.88 0.89 0.9960 19032

The resulting metrics, Accuracy and AUC-ROC, con-

sistently show high values across all datasets, confirming
the model’s effectiveness. The Precision and Recall met-
rics exhibit divergent trends as the dataset size increases,
while the F1 Score decreases with larger datasets.
When evaluating the accuracy for individual classes,
metrics Precision, Recall, and F1 Score demonstrate a
strong correlation with the number of available samples
for each class (tab. 3). Classes with larger datasets, such
as DME (2304 images) and NO (5382 images) in Data3,
show consistent improvements, with F1 Scores reaching
0.93 and 0.97, respectively. In contrast, smaller classes
like VID (15 images) and RVO (29 images) exhibit sta-
ble but limited performance due to insufficient data.
Precision fluctuates more for underrepresented classes,
while Recall improves for larger datasets, reflecting bet-
ter coverage of true positives. These results emphasize
the need for balanced datasets and augmentation to en-
hance performance for underrepresented classes.

Table 3. Quantitative performance metrics of machine learning mod-
els by class.

Class Precision Recall F1 Score Ntest images

Data1 Data2 Data3 Data1 Data2 Data3 Data1 Data2 Data3 Data1 Data2 Data3

AMD 0.97 0.96 0.88 0.96 0.98 0.93 0.97 0.97 0.91 238 273 246

DME 0.82 0.84 0.92 0.90 0.94 0.94 0.86 0.89 0.93 30 33 2304

ERM 0.86 0.92 0.73 0.91 0.66 0.96 0.89 0.77 0.83 35 35 56

NO 0.92 0.91 0.98 0.88 0.99 0.97 0.90 0.95 0.97 80 109 5382

RVO 0.74 0.88 0.79 0.77 0.72 0.72 0.76 0.79 0.75 22 29 29

VID 0.82 0.93 0.87 0.93 0.87 0.87 0.87 0.90 0.87 15 15 15

CSR 0.00 0.91 0.95 0.00 0.91 0.82 0.00 0.91 0.88 0 22 22

DR 0.00 0.95 0.53 0.00 0.91 0.73 0.00 0.93 0.62 0 22 22

CNV 0.00 0.00 0.97 0.00 0.00 0.97 0.00 0.00 0.97 0 0 8977

Drusen 0.00 0.00 0.89 0.00 0.00 0.87 0.00 0.00 0.88 0 0 1979

The results of the confusion matrix calculations are
presented in Figure 4. The high diagonal values, partic-
ularly for well-represented classes like AMD, DME, and
NO, indicate strong performance and accurate classifi-
cation in these categories. For underrepresented classes,
such as RVO and VID, the off-diagonal values high-
light occasional misclassifications, which may be due
to insufficient training data or overlap in feature repre-
sentation with other classes. Additionally, the matrices
show that the model struggles with certain classes like
CNV and Drusen, where the low Precision values sug-
gest challenges in correctly identifying true positives.

Figure 4. Confusion matrices for 3 datasets.
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To improve the interpretation of the model’s results,
this study employed a heatmap generation method that
uses gradients and activation maps from the last convo-
lutional layer of the neural network to create heatmaps
(fig. 5). These maps highlight the regions of the image
that are most important for the model’s decision-making.

Figure 5. Results of the heatmap generation method. (A) In an im-
age of age-related macular degeneration (AMD), the highlighted re-
gion corresponds to the detachment of the retinal pigment epithelium,
a biomarker of the disease. (B) Correct identification of the presence
of an epiretinal membrane (ERM) is accompanied by activation of the
part of the image where the membrane is located.

An example of using a chatbot based on the developed
model together with LLM is shown in Figure 6.

Figure 6. Chatbot based on the model and LLM.

4 Discussion
In this study, a deep machine learning model was de-

veloped for the classification of retinal pathologies. The
development process involved the application of transfer
learning as well as the use of open OCT image datasets.
The best accuracy achieved for the classification of 12
retinal pathology classes was 0.95 using a model based
on the ResNet50 architecture. Studies [Kulyabin et al.,
2024; Peng et al., 2023; Fang et al., 2022] also report

results from the use of datasets such as RETOUCH,
OCTDL, OCTID, and Kermany.

Table 4. Comparison of classification metrics for retinal pathology
detection across studies and datasets.

Ref. Dataset Network AUCROC Accuracy Precision

[?] RETOUCH dataset ResNet18 0.873 - -

[?] OCT-2017 dataset ResNet 50 - 94.0 94.5

[?] OCTDL ResNet 50 0.988 0.846 0.898

OCTID ResNet 50 0.979 0.923 0.932

Kermany ResNet 50 0.999 0.998 0.998

OCTID + OCTDL ResNet 50 0.996 0.957 0.954

Kermany + OCTDL ResNet 50 0.963 0.833 0.823

Present study OCTDL ResNet 50 0.990 0.930 0.880

OCTDL + OCTID ResNet 50 0.993 0.9326 0.930

OCTDL + OCTID + OCT2017 ResNet 50 0.996 0.9535 0.880

It can be noted that the AUC-ROC metric shows higher
values for the ResNet50 architecture when using one,
two, and three datasets in this study, compared to study
[Fang et al., 2022], which used the ResNet18 archi-
tecture. The Accuracy metric for the same neural net-
work architecture and the OCT2017 dataset is higher in
study [Peng et al., 2023] when the network was trained
on OCTDL and OCTDL combined with OCTID, but
lower when trained on OCTDL, OCTID, and OCT2017.
When comparing the metrics with study [Kulyabin et al.,
2024], it can be observed that the results after training on
the OCTDL dataset were better in terms of AUC-ROC
and Accuracy in this study, but 0.02 lower for Precision.
After training on OCTDL and OCTID datasets, the met-
rics in this study were lower; however, after training on
OCTDL, OCTID, and OCT2017, AUC-ROC and Accu-
racy became equal, while Precision values were lower
compared to study [Kulyabin et al., 2024]. These differ-
ences may be attributed to variations in the ratio of train-
ing, validation, and test datasets, as all other parameters
were equivalent in both studies. Moreover, this study
successfully trained the model to classify 10 retinal con-
ditions—9 pathologies and the normal state—whereas
study [Kulyabin et al., 2024] included only 7 classes.
The larger number of classes could have contributed to
the relatively lower Precision metric. Thus, it can be
concluded that transfer learning and the significant in-
crease in dataset size ensure high accuracy for classi-
fication models. Differences in datasets, preprocessing
methods, hyperparameters, model architecture, and the
division ratio of datasets into training, validation, and
test sets can significantly influence OCT image classifi-
cation results. An important aspect is that open access to
data has a substantial impact on the development of ar-
tificial intelligence technologies in healthcare. However,
such data must be accurately labeled to minimize the im-
pact of noise on accuracy. Additionally, transfer learn-
ing reduces the time and resources required for training
models.
The primary limitation of this study is the use of
only open datasets for model training. Although these
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datasets are relatively large, they may not encompass all
possible variations of retinal pathologies, which could
reduce the model’s generalizability to new data. More-
over, classification results may depend on data qual-
ity, further affecting model accuracy. It should also be
noted that some classes are underrepresented, causing
imbalances during model training and testing. While
the model performs effectively overall, further improve-
ments are needed for rare or underrepresented classes,
possibly through data augmentation or more balanced
datasets.
The integration of the model into a chatbot facilitates its
application in ophthalmology practice. This could sup-
port independent clinical studies of the model’s accuracy
and simplify the process of implementing the system into
healthcare workflows.

5 Conclusion
This study evaluated the feasibility of using transfer

learning and open datasets to train a deep neural network
with the ResNet50 architecture. Transfer learning and
the significant expansion of the dataset ensured high ac-
curacy for classification models. Additionally, the use of
three datasets increased the number of classes the model
could identify to 10. The AUC-ROC and Accuracy met-
rics were comparable to those reported in similar studies.
The study also highlights that open access to data plays
a crucial role in enabling the development of artificial
intelligence technologies in healthcare.
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