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Abstract
A control problem for a system, consisting of a rigid

body with a viscoelastic link is considered. Such a sys-
tem is modelled as a cart with a linear dissipative oscil-
lator attached to it. The cart moves along a horizontal
line under the action of a control force and unknown
disturbance, for example, dry friction, the parameters
of which are unknown and impermanent. The phase
state of the oscillator is assumed to be not available for
measuring. A bounded feedback control which brings
the cart to a prescribed terminal state in a finite time is
proposed.
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1 Introduction
We consider a control problem for a system represent-

ing a simplified model of a precision platform carry-
ing a viscoelastic link or a vessel with a viscous liq-
uid. Precise positioning of the platform is hampered
by dry friction acting between the platform and the sur-
face along which it moves, as well as disturbance from
the viscoelastic link. The parameters of friction are un-
known beforehand and may change in the process of
motion. The current state of the viscoelastic link is
not available for measuring. A control algorithm which
stops the platform in a prescribed terminal position in
a finite time is proposed. The state of the viscoelastic
link at the final moment is unimportant.
The proposed algorithm consists of two stages. At the

first stage, using the available information on the mo-
tion of the platform, we restore unknown phase vari-
ables characterizing the dynamics of the viscoelastic
link, and estimate the error in calculating these vari-
ables. For the control law applied at the first stage, this
error is not significant, while the system is far from the
terminal state.

At the second stage, when the energy of viscoelastic
link, as well as the perturbations caused by the oscil-
lations of the link are sufficiently small, a control law
is applied, which depends only on the coordinates and
velocities of the platform.
At both stages, for constructing the control we use the

approach proposed in [Ovseevich, 2015] and developed
in [Anan’evskii, 2016].

2 Statement of the Problem
Consider a cart with massm0 moving along a straight

line on a rough horizontal surface with linear dissipa-
tive oscillator attached to it. Oscillator is assumed to
be horizontally oscillating particle with massm1, con-
nected to the cart via spring with stiffnessκ. The cart
is acted by a control forceu0 and unknown disturbance
v0.
The system is governed by the equations

m0ξ̈ =κϕ+ γϕ̇+ u0 + v0,

m1(ξ̈ + ϕ̈) =− κϕ− γϕ̇,
(1)

whereξ describes the position of the cart on the hori-
zontal line,ϕ is the elongation of the spring of the os-
cillator, andγ > 0 is a coefficient of viscous friction.
The control forceu0 is bounded and exceeds the dis-

turbancev0, that is,

|u0| ≤ U0, U0 > 0; (2)

|v0| ≤ ρU0, 0 < ρ < 1. (3)

We assume that variablesξ, ξ̇ that describe the phase
state of the cart are known at every instant of time,
while the phase coordinates and velocitiesϕ, ϕ̇ of the
oscillator are not available for measuring.



The problem is to design a feedback control law that
brings the cart to the origin in a finite time. The state
of the oscillator is unimportant at the instant when the
cart reaches the origin.

3 The System in Canonical Form
Following [Ovseevich, 2015], we transform sys-

tem (1) to canonical form. First, we introduce the di-
mensionless time

τ =
κt

γ
, γ 6= 0, (4)

and denote

ξ̄ =
κ2m0

γ2U0

ξ, ϕ̄ =
κ

U0

ϕ, u1 =
u0

U0

,

v1 =
v0
U0

, a =
γ2

κm
, b =

γ2

κm0

.

(5)

Substituting these expressions into (1) and using the
dots to designate derivatives with respect to the dimen-
sionless time give

¨̄ξ = ϕ̄+ ˙̄ϕ+ u1 + v1,

¨̄ϕ = −a(ϕ̄+ ˙̄ϕ)− b(u1 + v1),

|u1| ≤ 1, |v1| ≤ ρ.

(6)

We turn to the vector variablesx ∈ R4:

x1 = ξ̄, x2 = ˙̄ξ, x3 = ϕ̄, x4 = ˙̄ϕ, (7)

to obtain

ẋ = A0x+B0(u1 + v1). (8)

Here

A0 =









01 0 0
00 1 1
00 0 1
00−a−a









, B0 =









0
1
0
−b









. (9)

The controllability matrixF= [B0 A0B0 A
2

0
B0 A

3

0
B0]

is nondegenerate becausedetF = b2(a − b)2 and
a − b, b > 0. Therefore, whenv1 ≡ 0, the Kalman
controllability condition is met.
A measured outputy ∈ R2 is given by

y = C0x, C0 =

(

1 0 0 0
0 1 0 0

)

. (10)

Whenv1 ≡ 0, system (8) is also observable because the
observability matrix[C⊤

0
A⊤

0
C⊤

0
A⊤

0

2
C⊤

0
A⊤

0

3
C⊤

0
] has

full rank 4.
We denotec = (a− b)−1 and introduce the new vari-

ablesz = Sx, z ∈ R4, where

S =









0 0 0 −1/b
0 0 1/b 0
0 2c 2/b 2c/b

−6c 6c 6(a−b−1)c/b 6c/b









. (11)

In the variablesz system (8) takes the form

ż = Az +B(u+ v1),

y = Cz,
(12)

with

A =









0 0 0 0
−1 0 0 0
0 −2 0 0
0 0 −3 0









, B =









1
0
0
0









,

C = C0S
−1 =

(

0 −c 1/2 −1/6
c −1 1/2 0

)

,

(13)

and

u(z) = u1(z)− a(z1 + z2). (14)

4 Phase State Estimation
In this section, using the measured output, we find

approximately the vector of the current phase state of
system (12). Denote byZ(t) the fundamental matrix
of (12)

Z(t) =









1 0 0 0
−t 1 0 0
t2 −2t 1 0
−t3 3t2 −3t 1









. (15)

Then, the solution of (12) with the initial statez0 is

z(t)=Z(t)

(

z0+

∫

t

0

Z−1(τ)B(u(τ)+v1(τ))dτ

)

(16)

and, using the notationH(t) = CZ(t), the measured
outputy(t), t ∈ [0, t1], can be written as follows

y(t)=H(t)

(

z0+

∫

t

0

Z−1(τ)B(u(τ)+v1(τ))dτ

)

.

(17)



Let us find the expected initial statez0
t1

with the same
output, but in case when there are no disturbancev. We
have

H(t)z0
t1

= y(t)− CZ(t)

∫

t

0

Z−1(τ)Bu(τ)dτ. (18)

Multiplying by H⊤(t) from the left and integrating
over the interval[0, t1], we obtain

Ĥ(t1)z
0

t1
=

∫

t1

0

H⊤(t)y(t)dt−
∫

t1

0

H⊤(t)H(t)

∫

t

0

Z−1(τ)Bu(τ)dτdt,

(19)

where

Ĥ(t1) =

∫

t1

0

H⊤(t)H(t)dt. (20)

The difference between the true initial statez0 and ex-
pected onez0

t1
is

Ĥ(t1)(z
0

t1
− z0) =

−
∫

t1

0

H⊤(t)H(t)

∫

t

0

Z−1(τ)Bv1(τ)dτdt.
(21)

For system (12), for smallt1, the following approxima-
tion is valid

z0
t1
− z0 ≈ ρ(p0 + t1p1),

p0 =









1
1− c
2− 4c

6− 18c+ 6c2









, p1 =









1/2
1/2

(1 − c)
3(1− 2c)









.
(22)

Assuming no disturbance, we expect the following
state of the system at the time instantt1:

ẑ(t1)=Z(t1)

(

z0
t1
+

∫

t1

0

Z−1(τ)Bu(τ)dτ

)

. (23)

Thus, due to the disturbancev1, the accumulated error
in the determination of the state of system (12) at the
instantt1 equals

z(t1, z
0

t1
)− z(t1, z

0) =

Z(t1)

(

z0
t1
− z0 −

∫

t1

0

Z−1(τ)Bv1(τ)dτ

)

,
(24)

and the following asymptotic estimate holds

lim
t1→o

‖z(t1, z0t1)− z(t1, z
0)‖ = ρ‖p0‖. (25)

5 Control Algorithm at the First Stage
Let z(t) be the true current state vector of the system,
ẑ(t) be its estimate, and

△z(t) = ẑ(t)− z(t). (26)

Substitutinĝz into control function (14) gives

u1(z +△z) = u(z +△z)+

a(z1 + z2) + a(△z1 +△z2).
(27)

Now, system (12) becomes

ż = Az +B(u(z) + v), (28)

where

v = v1 + v2 + v3,

v2 = u(z +△z)− u(z),

v3 = a(△z1 +△z2).

(29)

Below, following [Ovseevich, 2015], we describe a
bounded feedback control, which brings system (28)
to zero in the case when the entire vector of phase vari-
ablesz is known. To this end, we introduce the follow-
ing scalar functionT (z), the diagonal matricesδ(T )
andM , the vectorf , and the positive definite matrix
Q:

δ(T ) = diag(T−1, T−2, T−3, T−4),

M = diag(−1,−2,−3,−4),

f⊤ = (−10, 90,−210, 140),

Q =









20 −180 420 −280
−180 2220 −5880 4200
420 −5880 16800 −12600
−280 4200 −12600 9800









.

(30)

We compose the matrixA3 by filling the top row of the
matrixA with the components of the vectorf

A3 =









−10 90 −210 140
−1 0 0 0
0 −2 0 0
0 0 −3 0









. (31)

The following property holds:

QA3 +A⊤

3
Q = QM +MQ = P < 0, (32)

whereP is the negative definite constant matrix

P =









−40 540 −1680 1400
540 −8880 29400 −25200

−1680 29400 −100800 88200
14000 −25200 88200 −78400









. (33)



We define the functionT (z) implicitly by the equation

(Qδ(T )z, δ(T )z) = 1/5, z 6= 0, (34)

(from now on,(·, ·) means a scalar product). As it is de-
termined in [Ovseevich, 2015], equation (34) has only
one positive solution forT in the whole phase space
z ∈ R4 except zero. This solution is given by an an-
alytic function. Moreover, the functionT (z) can be
defined at zero asT (0) = 0, which preserves the con-
tinuity of it.
We designate the feedback law

u(z) = (f, δ(T )z), z 6= 0. (35)

The coefficients of the feedback control function (35)
at the phase variablesz increase infinitely asz tends
to zero. Nevertheless, control (35) meets the constraint
|u(z)| ≤ 1.
Denoteq = δ(T (z)z), q ∈ R4. Then system (28)

becomes

q̇ = T−1

(

A3q +Bv +MṪq
)

. (36)

Differentiating the functionT by virtue of (28) gives

Ṫ = − (Pq, q) + 2v(QB, q)

(Pq, q)
. (37)

Theorem 1. There exists ρ1 > 0 such that if

|v| ≤ ρ1, (38)

then the derivative of the function T by virtue of (28)
meets the inequality Ṫ < −σ, σ > 0.

Substituting ẑ instead ofz in expression (35), we
come to system (28) where the functionv is given
by (29).

Theorem 2. For a given δ > 0 there exists such ρ,
introduced in (3), that outside the neighborhood

G = {z ∈ R4 : ‖z‖ < δ} (39)

inequality (38) holds.

It follows from Theorem 1, that every trajectory
of (28) reaches the neighborhoodG in a finite time.

6 Control Algorithm at the Second Stage
At the second stage, when the system moves within

the neighborhoodG, we consider the first equation of
system (1) separately:

m0ξ̈ = u0 + F, F = κϕ+ γϕ̇+ v0. (40)

NowF is treated as an uncertain disturbance.

Theorem 3. The number δ in (39) can be chosen so
that, in the neighborhood G, the following inequality
holds:

|F | ≤ 3−
√
3

6
U0. (41)

In the neighborhoodG we use the control function

u0(ξ, ξ̇) = − 6m0ξ

T 2
1
(ξ, ξ̇)

− 3m0ξ̇

T1(ξ, ξ̇)
. (42)

Here, the functionT1(ξ, ξ̇) is implicitly defined by the
equation

d T 4

1
− 6ξ̇2T 2

1
− 24ξξ̇T1 − 36ξ2 = 0, d > 0. (43)

Similarly to the functionT , the functionT1 is analytic
and positive inR2 except zero, and can be defined at
zero asT (0, 0) = 0, which preserves the continuity of
it.
As it is shown in [Anan’evskii, 2016], the derivative

of T1 according to equation (40), under condition (41),
meets the inequalityṪ1 < −σ1, σ1 > 0.
Thus, the functionT1 vanishes to zero in a finite time,

i.e. every trajectory of equation (40) reaches the origin
of the phase spaceξ, ξ̇ in a finite time. This means that
the cart will be stopped in the origin by control (42).

7 Conclusion
The proposed approach is effective due to the fact that,

at the first stage, far from the terminal state, the feed-
back control used is insensitive to inaccurate knowl-
edge of current phase variables. At the second stage, in
the vicinity of the terminal state, where the vibrations
of the viscoelastic link are small, the control copes with
perturbations caused by these vibrations.
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