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Abstract 

We constructed the mathematical model of motion 
of a cylinder that has axisymmetric cavity filled by 
viscous filling. The cylinder leans by circle edge upon 
rough plane. For modeling the internal tangential 
friction we used the Helmholtz equations for the 
vortex components for the uniform vortex motion of 
ideal fluid. The terms corresponding to internal 
friction moment are phenomenologically introduced 
into right-hand sides of the equations expressing the 
change of momentum for solid body and filling.  

The examination of dissipativity of the system is 
performed.  

Results of numerical simulation of model equations 
are in qualitative agreement with known experimental 
data. 

We suggested the procedure for establishing 
correspondence between model internal friction 
coefficient σ and fluid filling viscosity µ. Study 
testifies the necessity of having sufficient 
experimental data for establishing quantitative 
correspondence between µ and σ. 
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1 Introduction 

The problem of motion of a solid body with cavities 
filled with liquid is a classical problem of theoretical 
mechanics. Its study began in 19th century by Stokes 
and continued by Helmholtz, Lamb and others by 
performing experiments as well as by constructing 
more and more complicated theories. Russian scientist 
N.E Zhukovski developed theory of motion of body 
with cavity filled with ideal fluid performing potential 
motion. Some types of motion of bodies with viscous 
fluid were analyzed by F.L. Chernousko with the help 
of asymptotic methods. In the same time, the problems 
of stability of motion of bodies with viscous filling 
began to be investigated. Theory and experiment 
supplement with each other but are developed not 
evenly. For example, experiments carried out in the 
LMSU Institute of Mechanics [Zhestkov, Samsonov, 
1983] for measuring the moment of friction between 

liquid filling and precessing walls of vessel need to be 
interpreted. One cannot expect obtaining the required 
formulae by means of solving the corresponding 
problem of hydromechanics.  

At the same time, phenomenological models can be 
useful for engineering practice. The main requirement 
for such models is that they would adequately describe 
the qualitative characteristics of the original problem.  

Such finite-dimension approach for studying motion 
of incompressible fluid was used, for example, in 
meteorological systems of hydrodynamic type 
[Gledzer, Dolzhanskij, Obukhov 1981]. 

The phenomenological model for moment of 
interaction between walls of vessel and filling was 
proposed in [Savchenko, Samsonov, Sudakov, 1988].  

The method for introducing this model into dynamic 
system describing motion of solid body with cavity 
filled by liquid filling was suggested in [Dosaev, 
Samsonov, 2002]. The Helmholtz equations for the 
vortex components for the uniform vortex motion of 
ideal fluid are used for modeling the interaction 
between vessel walls and filling. The terms 
corresponding to internal friction moments are 
phenomenologically introduced to right-hand sides of 
the equations expressing the change of momentum for 
solid top and filling.  

This approach was used in [Karapetyan, Sumin, 
2008] for solving a problem of stability of permanent 
rotation of a rod-suspended body with a viscous 
filling. 

In present paper we applied this technique for the 
problem of motion along rough plane of an 
axisymmetric solid cylinder (solid body) having 
axisymmetric cavity filled with uniform 
incompressible liquid.  

The cylinder motions are studied for wide range of 
initial conditions and values of parameters. Numerical 
simulation results are in a good qualitative agreement 
with experiment results described in [Samsonov, 
1982]. If initial spin of cylinder is relatively small, 
that cylinder monotonically inclines up to the 
determined limit nutation angle. If initial spin is big 
enough that cylinder first inclines down to bigger 
nutation angle and then ascends to the same limit 
nutation angle.  



 
 

 

Matching the model coefficient of internal friction 
with liquid viscosity is discussed using particular 
solutions of [Kazmerchuk, Samsonov, 1995].  

 
    

2 Problem Statement  
Consider a motion of axisymmetric solid cylinder 

with mass M1 along rough plane. The cylinder has the 
axisymmetric cavity filled with uniform 
incompressible liquid with mass M2. For simplicity 
it’s assumed that the cavity center coincides with the 
center of mass C of the body (Fig. 1).  

Introduce CXYZ  as principal axes of inertia. For 
convenience introduce two moving coordinate 
systems: Cxyz, Сξηζ . Axis Сζ  is vertical, axis Cz is 
directed along axis of body symmetry. We assign the 
body orientation by three Euler angles: ϑ  is nutation 
angle, the angle between axes Cz and Сζ ; ψ  is the 
angle of precession of axis Cz around axis Сζ ; ϕ  is 
the angle of body rotation about axis Cz. Coordinates 
ψ  and ϕ  are obviously cyclic ones.  

 
 

 
Figure 1. Cylinder with cavity on a plane. 

 
Redefine coordinate systems Cxyz and Сξηζ  in 

such a manner that axes Сξ  and Сх are directed along 
the line of nodes. Height h of center of mass C is 
related with the nutation angle ϑ : 

cos sinh a bϑ ϑ= +  
Two other coordinates of C are cyclic, so we 

introduce projections Vξ  and Vη  of center mass 
velocity onto axes Cξ  and Cη , correspondingly. 

Suppose that external forces: gravity Mg  and 
supporting force R



, and resulting moment extM


 act 
directly upon the solid body. The filling experiences 
influence of only the walls of the cavity. As the center 
of mass of the filling does not move relatively to the 
body, the interaction between the filling and the body 
can be reduced to resulting couple of forces with the 
moment intM



.  
To describe the motion of center of mass C we use 

the principle of momentum. The corresponding 
equation looks as following in axes Сξηζ  
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fr
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Note that first equation is required only for 
determination of vertical component N of supporting 
force R



 ( frF  is the horizontal component of R


) 
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Define the friction force frF  as a dry friction force 
directed against velocity of point P of contact: 

/fr P PF f N V V= −
 

 
To describe the motion of the system around the 

center of mass we use the classical angular momentum 
theorem.  

Angular momentum of cylinder 1G


 is related with 
angular speed as follows: 

1 1G ω= Θ


  
here 1Θ  is a tensor of inertia of body. Denote the 

index 1 for solid body and index 2 for liquid filling. 
We assumed that state of filling can be described by 

its instantaneous vortex vector Ω


. Then it takes sense 
to consider the motion of the filling as combination of 
two motions: potential motion with some potential and 
vortex rotation. In this case the angular momentum of 
filling G2 can be presented as follows: 

* '
2G ω= Θ +ΘΩ
 

  
here *Θ  is a diagonal tensor of inertia of so called 

equivalent body, ' *
2Θ = Θ −Θ is a difference between 

tensor of inertia of liquid filling and tensor of inertia 
of equivalent body. 

The equation for description of system rotation 
about center of mass looks as following: 
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State of the filling is described by the vortex 
components satisfying the Helmholtz equations.  
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Parameters iε  characterize the cavity geometry. 
We converted the system (1-2) into the system of 

two vector equations expressing the change of angular 
momentum for solid body and filling correspondingly. 
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here 1 1 1,A B C= ; * * *,A B C= ; and ' ' ',A B C=  are 
diagonal elements of 1Θ ; *Θ ; and 'Θ  correspondingly 
in axes CXYZ . 

Evidently, there exist two mechanisms of interaction 
between filling and solid body. The first mechanism is 
related with the pressure of the viscous filling on walls 
of the cavity. The second mechanism is related with 
tangential stresses or, in other words, with the friction 
between the filling and walls of the cavity. Vector ξ



 
is responsible for first mechanism of interaction due to 
the fact that it was received from equations for motion 
of ideal liquid.  

Introduce the vector frL


 which is responsible for 
second mechanism of interaction. Assume that the 
moment frL



 depends linearly on the difference 
between the vortex vector of the filling and angular 
velocity of the body 

( )frL σ ω= Ω −
 

  
Here σ is a tensor which looks as follows in axes 

CXYZ :  
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Then the terms corresponding to internal friction 
moments are phenomenologically introduced to right-
hand sides of the equations. After that, system (3) 
looks as follows 

1
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As a result, we received a system of 9 equations with 
9 variables: , , , , , , , ,x x y z V Vξ ηϑ ω ψ ϕ Ω Ω Ω  . 

Assume that cavity is ellipsoidal and its equation in 
axes CXYZ  looks as following 
( )2 2 2 2 2

1 2 1 3 3/ / 1x x a x a+ + =  
Then we have a set of 11 dimensional parameters: 

1 1 1 2 1 3 1 3, , , , , , , , , ,M a b A C M a a fσ σ . 
 
2.1 Dissipativity condition 

Like for any mechanical system with friction 
(including internal friction), the energy in this system 
must dissipate. The full mechanical energy of system 
is given by the following relation: 

( )
( )

2 2 2

22 2 2

/ 2
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Here ( )' * / 2liqT ω ω= ΩΘΩ + Θ  is kinetic energy of the 

liquid filling, ( )cos sinb Mg a bϑ ϑΠ = +  is potential 
energy of gravity. 

Energy time derivative is  
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Scalar product ( ),P frV F
 

 provides the energy 
dissipation related with the external friction between 
the body and the rough plane. Necessary and sufficient 
conditions for dissipativity of the suggested internal 
friction model are as follows:  

1 30, 0,σ σ> >  
 

2.2 Trajectories of dynamic system 
Compare trajectories of developed dynamic system 

with trajectories of real vessel containing liquid 
filling. To this effect we performed the computer 
simulation of system and compared results of 
numerical simulation with results of natural 
experiments [Samsonov, 1982]. 

In [Samsonov, 1982] the motion of aluminium 
cylinder leaned by circle edge upon plane wooden 
surface was registered. Cylinder has cylindrical cavity 
filled by mixture of water and glycerin. Two 
characteristic types of cylinder behavior were 
registered during tests. Under relatively small initial 
spin (about 5000 rpm) cylinder performed monotonic 
inclining down to some specific angle *ϑ and then 
transferred to regime of precession-rolling and then 
fell down. If initial spin was greater in 1.5-2 times, 
cylinder first inclined down to angle greater than *ϑ , 
then cylinder raised up to the angle *ϑ , and then fell 
down. So, under greater initial spin the nutation angle 
ϑ  of the cylinder was non-monotonic time function.  

We aimed the numerical calculation of dynamic 
equations for checking the fact if this system has 
trajectories with difference depending on initial 
conditions in monotony of behavior of the nutation 
angle ϑ .  

For computer simulation, the following values of 
parameters were chosen: a = 2,2 cm, b = 1,2 cm, Сх = 
0,7 cm, Сz = 1,4 cm, M1 = 45,9 g, A1, = 164,9 gcm2, 
C1, = 37,2 gcm2. 

Estimations are given for rest of parameters. The 
coefficient f of friction between aluminium and other 
materials known from literature is from 0.1 to 0.9. For 
calculation we’ve chosen f = 0.1 taking into account 
the fact that during observed experiment the 
permanent contact of cylinder with support surface 
was not guaranteed. Mass-geometry parameters of the 
filling are determined from the assumption that the 
cavity is spherical with radius R = 0.88 cm. 

Model parameter 1 3σ σ σ= =  depends on glycerin 
viscosity. The nature of this dependence is unknown. 
In this context, the purpose of simulation is redefined: 
to determine the range of σ , for which the increasing 
initial values of ϕ  and ψ  violates the monotony of 
angle ϑ . 



 
 

 

Calculation is carried out for two sets of initial 
conditions: 

I. 
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Two ranges of parameters σ  are found satisfied to 
simulation task: 1) 50σ ≈ ; 2) 450σ ≈ . 

For convenience of comparison of calculations with 
results of other works we project trajectories onto 
phase plane (u,v), where 

1 1

2 2
1 1

' * 2
1

( ) cos

( ) ( sin cos )
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u(t) is projection of the angular momentum of 
system onto axis Cz, v(t) is projection of the angular 
momentum of system onto axis Cζ . 

Curves u(v) are shown in Fig. 2 for values 50σ =  
and 450σ = . Curves appearance qualitatively agrees 
with curves predicted in [Samsonov, 1985]. 

 

 
Figure 2. Phase trajectories of dynamic system 

 
For small values of parameter σ  ( 50σ  ) the curve 

u(v) looks as type I both for the first and the second 
set of initial conditions. For 50 450σ   curves u(v) 
look as type II for both sets of initial conditions. For 
σ  essentially exceeding 450, curves u(v) look as type 
I for both cases. But in neighborhood of 50σ = and 

450σ =  curves for first set of initial conditions look 
as type I, and for second set of initial conditions, as 
type II. 

Initial spin of liquid during nature experiments is 
unknown value. We carried out additional special 
calculations for wide range of initial filling spin value 
that showed that this value does not influence 
significantly the behavior of trajectories. 

Thus, numerical simulation indicates two ranges of 
values of parameter σ  for which there exists 
qualitative correspondence between behavior of the 
modeling dynamic system and of the physical object. 

It is necessary to carry out additional study to 
determine, which range really corresponds to viscosity 
of liquid filling used in natural experiment 
 

2.3 Connection between model coefficient and 
filling viscosity 

The internal friction coefficient is undoubtedly 
related with the viscosity µ  of the filling. It would be 
rather useful to describe this relationship. Evidently, 
both the coefficient and viscosity influence on the 
moment that acts from the filling upon walls of the 
cavity. Since the liquid performing a regular 
precession is not at rest relative to the body, it is 
convenient to use this steady motion for construction 
of the relationship between the moment and the 
viscosity µ . From the results of experiments [Мark, 
1974; Miller, 1981] and theoretical analysis 
[Kazmerchuk, Samsonov, 1995] it is known that the 
axial projection of the moment is a non-monotonic 
function of viscosity, and each moment value 
corresponds to two viscosity values.  

Now we describe the procedure for making the 
relation between the internal friction coefficient and 
the filling viscosity, using formulae from 
[Kazmerchuk, Samsonov, 1995] for the axial 
projection zM  of the moment intM



 of interaction 
between the filling and the cavity walls.  

In this work there were obtained explicit formulae 
for the particular cases of small and large Reynolds 
numbers: 

2 4 2Re 1 8 2 sin / Rez x zM C Cπρψ ϑ= 
  (4) 

2 4 2Re 1 sin Re/ 6z x zM C Cπρψ ϑ= 
  (5) 

here 2Re /xCϕ ρ µ=  , ρ is the liquid density, Cx and Cz 
are the dimensions of the cavity. 

Consider regular precession of the body-vessel with 
spherical cavity filled with fluid. In this case the 
equations describing the change of the vortex vector 
components can be solved analytically, and a finite 
formula can be obtained for the axial projection of 
moment intM



. Expectedly, the axial projection of the 
moment is a non-monotonic function of the friction 
parameter, and each moment value (except the 
maximal one), corresponds to two friction parameter 
values.  

The expression for the axial projection of intM


 looks 
as follows: 
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2 2 2 2 2
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z z zM
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σ ω
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= − +  
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Two formulae (for small and large Reynolds numbers) 
follow from (4-6) for relation between viscosity µ  
and internal friction parameter σ  
For small Re (curve l1, Fig. 3): 

2 7 2 2 4 2
3 2 3(25 / 4 / ) / 6R M Rµ πρ σ ψ σ= +   

For large Re (curve l2, Fig. 3): 
2 3 2 6 2 2 2 2

3 / 128 ( )x zC Cµ σ ϕ π ρ σ ψ = +    



 
 

 

 

 
Figure 3. Relation between filling viscosity and model 

coefficient of internal friction. 
 
In both cases each value of µ corresponds to two 

values of σ. These curves attain extrema 
( )2 2 3 2

min max5 / 8, / 900R Rµ ρ ψ µ ρ ϕ ψ= =    at one specific 

value 2
* 2 5 fМ Rσ ψ=  . It would be natural to suppose 

that there exists a monotonic dependence between the 
parameter σ and the viscosity. In [Savchenko, 
Samsonov, Sudakov, 1988] the experiments [Miller, 
1981] were evaluated, and it was shown that for σ→∞ 
the relationship between σ and viscosity is linear, 
while for small values of the viscosity σ ~ µ . 

As the relationship between σ and µ is linear for σ 
tending to infinity (σ →∞ ), only the curve part l1 does 
for values of σ that are much greater than *σ . So, we 
should not consider the curve part l2 for such σ. But 
for small values of µ we have to use the curve part l2 
for σ much smaller than *σ . 

 
3 Conclusion 

The mathematical model of motion of cylinder with 
axisymmetric cavity filled by viscous filling and 
leaned by circle edge onto rough plane is constructed. 
The verification of dissipativity of system is 
performed.  

Results of numerical simulation of model equations 
are in qualitative agreement with known experimental 
data. 

The procedure is developed for establishing 
correlation between the model internal friction 
coefficient σ and the fluid filling viscosity µ . Study 
testifies that it is necessary to obtain experimental data 
that would be sufficient for establishing quantitative 
correspondence between µ  and σ . 
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