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Abstract.

The aim of this paper is to bring to light the peapes provided to the phase plane by
a generic two dimensional periodic autonomous dyoainsystems (PADS) vectorfield. An
associated periodic parameters linear equation (&P defined in each point of the phase
plane. It is shown that the local behavior of thiéal PADS trajectories is related to the value
the Floquet - Liapunov exponents of this APPLE. Atnod to compute the Floquet -
Liapunov exponent value without integration is us8e, it is possible to predict some
characteristic patterns of trajectories as funigelhresonance, period doubling, sensitivity to
initial conditions. Moreover, the equation of a nfialdl periodically crossed by the solutions
is carried out. The method is applied to periodam\der Pol and Duffing equations.

1. | ntroduction

1.1.  General presentation. Most of dynamical systems studied since severeddes have
constant parameters and it is well known that seimgple and generic differential equations
exhibit very complex solutions including chaotitrattors. The simplest and the most famous
example leading to very different and very compénations is the Chua model, (E. Bilotta
and P. Pantano [2008]). The introduction of timeyway coefficients provides an additional
degree of complexity. Nevertheless it is imposstblavoid periodic parameters to study, for
example, the population evolution of species irging in an open environment, because
particularly the birthrates depend on temperaturé photometry which evolve daily and
yearly. Other models used in biology to study reltanythms, or in meteorology to take in
account the time variations of physical parameters,in electronics, involve periodic
coefficients.

This paper deals on generic two dimensional pamenatitonomous dynamical systems
(PADS). Tracking the trajectory would need more arate precise numerical and analytical
tools and does not help so much to understand ltealgsolution behavior. The method



proposed in this work is based on the propertieserced by the velocity vectofield to each
point of the phase plane. At first, some featurethe solutions are deduced from the values
of the Floquet-Liapunov exponents of an associgiedodic parameter linear equation
(APPLE). In some domain of the phase plane, thatisols exhibits characteristic patterns
which are related to the value of Floquet-Liapue&ponents, as funneling, resonance, period
doubling, sensitivity to initial conditions. Thean associated constant coefficient equivalent
equation (ACCES) is defined so as its characteristponents are the Floquet-Liapunov of
the APPLE. Former works are used to establish ¢hateon of an invariant manifold of the
ACCES which is periodically crossed by the trajeet® of the initial PADS. The last part is
devoted to applications of the method to Van déraRd Duffing equations.

1.2. Themodd. This work deals on periodic autonomous dynamicsilesy (PADS) :

x=flxyt)
{5' =9(xy.1) .

where the mappings(x,y,t): R® - R, (x,y,t) » f andg(x,y,t): R® - R, (x,y,t) » g, are
continuous and derivable with respect to x, y aimlR3, and are T-periodic with respect to t
with the same period :

fl,y,t+nT) = f(x,y,t)and g(x,y,t + nT) = g(x,y,t) ,YtE Randn € Z (2)

The mapping¥ (x, y,t) andg(x, y, t) are supposed to satisfy the condition of existeard
unicity of solutions of (1).

2. Local properties of solutions

2.1. Associated periodic parameter linear equation (APPLE). Let 6x(t) and§y(t) be
small spatial variations aroundt) andy(t). The locally associated periodic parametric linear
equation (APPLE) is defined as

2] = 5 ®

where J,(x,v): R3 - R*, (x,v,t) » J.(x,y) is the Jacobian matrix of the PADS (r,y).
J:(x,y) is as well T-periodic with respect to t.

2.2. The Floquet theory. According to the Floquet - Liapunov theorem, gwdution of
APPLE is a linear combination of twoodes :

6x(O] _ ppe [22(0) Le [X2(0)
ay(t)]‘e“ [¢1<t)]+e“ lpz(t)] (4)



wherey, € C is the Floquet - Liapunov exponent gndt) andy,(t): R - R, t » y,(t) and

Y, (t), are T-periodic mappings, continuous and derivablR® with respect to t, k = 1, 2. Of
course, iy, xx(t), Yy (t) depend on(x,y). There are values of (x, y) for which one of the
Floguet - Liapunov exponent, for examplg, has a larger negative real part. Now, the
variation of the real part of the Floquet-Liapunexponent is smooth with respect to the
coordinategx, y) of the location where they are computed. Thethéncorresponding domain
of the phase plane, the associated mode vanisltetharAPPLE has thereforenaonomodal
solution related tou,. The first aim of this work is to find the locus the phase plane (X, y)
where the behavior of the solution of the PADS setadthe remaining mode of APPLE.

2.3. Proposition 1. Let [6x(t), §y(t)]T such a monomodal solution of APPLE related to
the Floquet - Liapunov exponept :

Sx(O] _ e [X(®
se) =" b ®)

For any point(x,y) of the phase plane, we consider the titgeif it exists, such as the
corresponding solutions follow the initial condits

x(t) =0 and y(t)) =0 (6)

Then,u is an eigenvalue gf (x,y) and the related eigenvector is
Y(to)l [Pty +nT)

In other words, the following relationship holds
X(to)] _ X(to)]

Joo L)) = H lw(to)

(8)

Sketch of proof. The derivative of (5) consists of two terms. Actiog the hypothesis (6), one
of them is null. For a more complete demonstratsa® B. Rossetto and Y. Zhang, 2009.

24. Different patterns of PADS solutionsin the phase plane. Let us consider the domain
of the phase plane where the solution of APPLE am@modal. Such a domain can be large
because the spatial variation of the Floque-Liapuaexponent is smooth. The solutions are
funneled if its real part is negative, sensitiveirigial conditions if positive. According the
value of the imaginary part, period doubling ororeances can be observed.

The exact value of the Floquet-Liapunov exponentthid APPLE is computed using a fast
algorithm, without integration (B. Rossetto, 2006)



3. Associated constant coefficient equivalent system (ACCES)

3.1. Definition. The ACCES is the non linear dynamical system wihstant coefficients
defined ont = ¢,

J'C = f(xl y' tO)

. 9
{y=g(x,y,to) ®)
where the mappingg(x, y, t,) andg(x,y,t,) : R?> - R, (x,y) ~ f andg, are the same as in
the definition of the initial periodic dynamicalstgm (1) fort = t,.

3.2 Proposition 2. Invariant manifold of the ACCES. The manifoldg(x,y) = 0 of the
ACCES is locally defined as the locus in the phalaee(0, x, y) where we can find a value of
to such that the Floquet - Liapunov exponent of tlimmemodal solution of APPLE is areal
eigenvalue of the Jacobian matfix(x,y). Then the equation of the manifoldi(x,y) = 0 is
given by

f(xry'tO) — X(tO)
g(x'y'tO) Il)(to)

(10)

Moreover, on this manifold, the periodic past(t) andy,(t) of monomodal solutions of
APPLE verify y(t,) = 0 andy(t,) = 0.

Proof. This proposition uses former results to work tha& manifold equation of autonomous
dynamical systems (Rossettoa& [1998] and B. Rossetto and Y. Zhang, 2009).

3.3. The flow curvature theory. According another simple and general way, callez th
flow curvature method [Ginoux, 2009], the manif@dfx, y) = 0 of ACCES is defined as the
location of points on which the curvature is ndlhis theory applies for"horder dynamical
systems. In this case, if(t) is the velocity and’(t) the acceleration of the ACCES system,
according the flow curvature method, the invariaranifold ®(x, y) = 0 of this system has a
null local curvature. For second order systems, ithplies:

[(t)) AV(ty) =0 (11)

Thus, the acceleration of the motion along the foéthis collinear to the eigenvector (7). The
attractive part of this manifold, defined BY(t,). grad(¢) > 0, is aninvariant manifold of
ACCES.

3.4. Proposition 3. The manifold crossing problem. The trajectories of PADS cross the
invariant manifoldg (x, y) = 0 of ACCES att, + nT with a null transversal acceleration and,
therefore, a maximal transversal velocity.



Proof. The acceleration af, or t, + nT is collinear to the velocity, itself collinear the
eigenvector. Thus the transverse component of ¢ticeleration is null (B. Rossetto and Y.
Zhang, 2009).

3.5. Proposition 4. Thetrajectory inflexion problem. If Re{u,} < 0 andIim{u,} # 0, then
the local curvature of the trajectory of PADS ire thhase plane changes on the manifold
defined byRe{u;} = 0. In other words, there is an inflexion point omstmanifold while the
sign of Re{u,} changes.

Sketch of proof. If Re{u,} > 0 (resp.< 0), the curvature of the trajectory is positive fres
negative). There is an inflexion point Be{u,} = 0.

4. Examples

4.1. The Fig. 1 (parametric resonance), Fig. 2 (funmgedind sensitivity to initial conditions)
and Fig. 3 (periodic solution) concerns Yan der Pol parametric periodic system :

{xzf(x,y,t)=20(—§+x+y(1+a1cos(2n§))) (12)
y =g(x:y’t) =—X

4.2. The Fig. 4 shows the inflexion locus of tiparametrically driven double-well
Duffing equation :

{56=f(x,y,t) =y

y:g(x:y;t) :x_x3_0-2y+a1xcos(2ﬂ%) (13)
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Fig. 1. Periodic Van der Pol equation

a; = 1.33333333; T=5
(resonance). In green : the cubic, blue :
the slow manifold, red : the manifold
periodically crossed by the trajectories.
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Fig. 2.Periodic Van der Pol equation
a; = 30; T= 0.08929
(funneling).
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Fig. 4. Parametrically driven double-well
Duffing equation. The locus of inflexion points
x = +0.57595 only depends ox.

Fig. 3.Periodic Van der Pol equation
a; = 30; T= 0.08929
(periodic solution



