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Universitat Politècnica de Catalunya

Spain
maria.isabel.garcia@upc.edu

Sonia Tarragona
Departament Matemàtica Aplicada I
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Abstract
We consider triples of matrices (E, A,B), represent-

ing singular linear time invariant systems in the form
Eẋ(t) = Ax(t) + Bu(t), with E, A ∈ Mn(C) and
B ∈ Mn×m(C), under proportional and derivative
feedback.
Structural invariants under equivalence relation char-

acterizing singular linear systems are used to obtain
conditions for controllability of the systems.
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1 Introduction
We consider linear and time-invariant continuous sin-

gular systems of the form

Eẋ(t) = Ax(t) + Bu(t), x(t0) = x0, (1)

where E, A ∈ Mn(C), B ∈ Mn×m(C), and ẋ =
dx/dt, that we will represent us a triples of matrices
(E,A, B), and we will denote by M , the set of this
kind of triples.
Singular systems also called descriptor systems, gen-

eralized systems or diferential/algebraic systems, are
found in engineering systems such as electrical , chem-
ical processing circuit or power systems among others,
and they have attracted interest in recent years.
In this paper, we present a collection of structural in-

variants which we will call controllability indices of the
triple in terms of ranks of certain matrices associated
to the triple, that permit us to give the explicit form of
reduced triple (In, A2, B2) without knowing the trans-
formation matrices reducing the triple. As a corollary,
a necessary and sufficient condition for controllability
of the triple is deduced also in terms of the rank of a
certain matrix.

We recall that the authors L. Dai [1], and W. Ratz [5]
studied the controllability character for singular sys-
tems but they do not consider feedback and derivative
feedback in the equivalence relation, only consider ba-
sis change in the state space, input space and premulti-
plication the system by invertible matrices.
The problem to obtain structural invariants permit-

ting us to conclude conditions for controllability,
was largely studied for standard linear systems under
several equivalence relations that can be considered
([3],[4], [6] for example).
In the sequel we identify triples of matrices (E, A, B)

with rectangular matrices
(
E A B

)
in order to use ma-

trix expressions.

2 Feedback equivalence
Different useful and interesting equivalence relations

between generalized systems have been defined. We
deal with the equivalence relation (E′, A′, B′) =
(QEP + QBFE , QAP + QBFA, QBR). with P ∈
Gl(n; C), Q ∈ Gl(n;C), R ∈ Gl(m; C), FA, FE ∈
Mm×n(C), that is to say the equivalence relation ac-
cepting one or more, of the following standard trans-
formations: basis change in the state space, input space,
feedback, derivative feedback and premultiplication by
an invertible matrix.

Definition 1. Two triples (E′, A′, B′) and (E, A, B)
in M are called equivalent if, and only if, there ex-
ist matrices P ∈ Gl(n; C), Q ∈ Gl(n;C), R ∈
Gl(m; C), FE , FA ∈ Mm×n(C), such that

(E′, A′, B′) =
(QEP + QBFE , QAP + QBFA, QBR),

or in a matrix form

(
E′ A′ B′ ) = Q

(
E A B

)



P 0 0
0 P 0

FE FA R






It is easy to check that this relation is an equivalence
relation.

Making use of the following notations.
- In denotes the n-order identity matrix,
- N denotes a nilpotent matrix in its reduced form N =

diag(N1, . . . , N`), Ni =
(
0 Ini−1

0 0

)
∈ Mni(C),

- J denotes the Jordan matrix J = diag(J1, . . . , Jt),
Ji = diag(Ji1 , . . . , Jis

), Jij
= λiI + N ,

- L = diag = (L1, . . . , Lq), Lj =
(
Inj

0
) ∈

Mnj×(nj+1)(C),
- R = diag(R1, . . . , Rp), Rnj =

(
0 Inj

) ∈
Mnj×(nj+1)(C).

Theorem 1 ([2]). Let (E,A, B) be a triple. Then, it is
equivalent to

((
E1

SE

)
,

(
A1

SA

)
,

(
B1

0

))
, (2)

where (E1, A1, B1) is a regularizable triple in its Kro-
necker reduced form (see [2]), concretely

(E1, A1, B1) =





I1

I2

N2


 ,




N1

J
I3


 ,




B1

0
0







The triple (I1, N1, B1), is a controllable standard sys-
tem in its Kronecker reduced form, (I2, J, 0) corre-
sponds to the finite zeros of the triple and J in its Jor-
dan reduced form, (N2, I3, 0) corresponds to the in-
finite zeros of the triple and N2 in its Jordan reduced
form. The triple (SE , SA, 0) is the strictly singular part
of the system in its Kronecker reduced form:

((
L1

Lt
2 0

)
,

(
R1

Rt
2 0

)
,

(
0
0

))

A complete system of invariants to obtain the canoni-
cal reduced form can be fond in [2].

3 Controllability
We recall that a system is called controllable (see [1])

if, for any t1 > 0, x(0) ∈ Rn and w ∈ Rn, there exists
a control input u(t) such that x(t1) = w.
Equivalently

Theorem 2 ([1]). A system (E, A,B) ∈ M is control-
lable if and only if

rank
(
E B

)
= n,

rank
(
sE −A B

)
= n, for all s ∈ C.

First of all we prove that the controllability is pre-
served by the equivalence relation considered.

Proposition 1. The controllability character is invari-
ant under equivalence relation considered.

Proof. Let (E, A,B), (E′, A′, B′) two equivalent
triples. So, there exist matrices Q,P ∈ Gl(n;C),
R ∈ Gl(m; C) and FE , FA ∈ Mm×n(C) such that

(
E′ A′ B′) = Q

(
E A B

)



P 0 0
0 P 0

FE FA R


 .

Then

rank
(
E′ B′) = rank Q

(
E B

) (
P
FE R

)
=

rank
(
E B

)
,

and

rank
(
sE′ −A′ B′) =

rank Q
(
sE −A B

)(
P

sFE − FA R

)
=

rank
(
sE −A B

)
.

This proposition permit us if necessary, to take an
equivalent triple in its canonical reduced form.

Proposition 2. A necessary condition for controllabil-
ity is that the system be standardizable. That is to say,
the triple is equivalent to (I, N, B1).

Proof. It suffices to take a triple (E, A, B) in
its reduced form and compute rank

(
E B

)
, and

rank
(
sE −A B

)
.

We consider the following matrices

Mi(C) ∈ M(i+1)n×(in+2im)(C).

M1 =
(
E B 0
A 0 B

)
,

M2 =




E B 0 0 0 0
A 0 B E B 0
0 0 0 A 0 B


 ,

M3 =




E B 0 0 0 0 0 0 0
A 0 B E B 0 0 0 0
0 0 0 A 0 B E B 0
0 0 0 0 0 0 A 0 B


 ,

...

M` =




E B 0 0 0 0 0 0 0
A 0 B E B 0 0 0 0
0 0 0 A 0 B E B 0
0 0 0 0 0 0 A 0 B

. . .




.

Definition 2. We consider the following numbers r =
(r1, . . . , r`, . . .), where ri = rank Mi, ∀i = 1, 2, ....



Proposition 3. In the set M of singular systems, the ri

numbers are invariant under the equivalence relation
considered.

Proof. Let (E,A, B), (E′, A′, B′) be two equiva-
lent triples in M , then, there exist matrices P, Q ∈
Gl(n; C), R ∈ Gl(m; C), FE , FA ∈ Mm×n(C) such
that

(
E′ A′ B′) = Q

(
E A B

)



P 0 0
0 P 0

FE FA R




So,

r1
′ = rank

(
E′ B′ 0
A′ 0 B′

)
=

= rank
(
Q 0
0 Q

)(
E B 0
A 0 B

) 


P 0 0
FE R 0
FA 0 R


 =

= rank
(
E B 0
A 0 B

)
= r1.

Calling Q =




Q
. . .

Q


 and

P =




P 0 0
FE R 0
FA 0 R

P 0 0
FE R 0
FA 0 R

. . .




r`
′ = rank




E′ B′ 0 0 0 0
A′ 0 B′ E′ B′ 0
0 0 0 A′ 0 B′

. . .


 =

= rank = Q
(
E B 0
A 0 B

)
P =

= rank




E B 0 0 0 0
A 0 B E B 0
0 0 0 A 0 B

. . .


 = r`.

Theorem 3. A triple (E, A, B) is controllable if and
only if rn−1 = n2.

Proof. Suppose now that the triple is controllable, tak-
ing into account proposition 2, the triple is equivalent
to an standard one (I, N,B1). Then, computing rn−1

in this equivalent reduced form, we obtain

rn−1 = (n− 1)n + rank
(
B1 NB1 . . . Nn−1B1

)
.

We observe that rn−1 = n2 if and only if (N, B1) is
controllable.
Conversely, suppose rn−1 = n2, we have

rank
(
E B

)
= n, because

(
E B

)
correspond to the first

n-row block matrix in the n2×((n−1)n+2(n−1)m)

matrix




E B 0 0 0 0
A 0 B E B 0
0 0 0 A 0 B

. . .


 having full rank. So

the triple is standardizable and we can compute rn−1

using the reduced form (In, A1, B1). Finally, it suf-
fices to observe that the standardizable triple (E, A, B)
is controllable if and only if (A1, B1) is controllable:

rank
(
E B

)
= rank

(
In B1

)
= n,

rank
(
sE −A B

)
= rank

(
sIn −A1 B1

)
= n, ∀s ∈ C.

Finally, we define a collection of numbers that permit
us to deduce the controllability indices of a controllable
triple.
We call r0 = rank B, and we define the ρ-numbers in

the following manner.

Definition 3.

ρ0 = r0

ρ1 = r1 − r0 − n
ρ2 = r2 − r1 − n

...
ρs = rs−1 − rs − n.

It is obvious the following proposition.

Proposition 4. The ρ-numbers are invariant under
equivalence relation considered.

Proposition 5. The controllability indices [k1, . . . , kp]
of a controllable triple, are the conjugate partition of
[ρ0, ρ1, . . . , ρs].

Proof. It suffices to compute the ρ-numbers of a equiv-
alent reduced form to the controllable triple.

We observe that if the (E, A,B) is controllable then
k1 + . . . + kp = n and p = ρ0 = rank B.

Theorem 4. Let (E,A, B) be a controllable triple
with Kronecker indices (k1, . . . , kp). Then the triple
can be reduced to (In, A1, B1) with

A1 =




N1

. . .
Np


 , B1 =




B1
1

. . .
B1

p




and Ni =




0 1 0
. . .

. . .
1
0


 ∈ Mki(C), B1

i =




0
...
0
1


 ∈

Mki×1(C).



Proof. It suffices to observe that the Kronecker in-
dices for (E, A, B) coincide with Kronecker of the pair
(A1, B1).

Example 1. 1) Let (E, A,B) be a triple with E =


2 1 1 1
1 2 1 1
2 3 3 2
0 1 0 2


, A =




1 2 1 1
1 1 2 0
3 2 1 −1
2 1 3 5


, B =




0 0
0 0
5 0
0 2


.

Computing the ri numbers we obtain, r0 = 2, r1 = 7,
r2 = 12, r3 = 16 = r2 + n. Then ρ0 = 2, ρ1 = 1,
ρ2 = 1 and the Kronecker indices are k1 = 3, k2 = 1.

So (E, A, B) ∼ (I4, A1, B1) with A1 =




0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0


,

B1 =




0 0
0 0
1 0
0 1


.

2) Let (E, A,B) be a triple with E =




3 1 1 1
1 3 1 1
1 1 3 1
1 1 1 3


, A =




0 3 0 1
0 1 0 1
0 1 0 3
0 1 0 1


, B =




1 1
3 1
1 1
1 3


,

Computing the ri numbers we obtain, r0 = 2, r1 = 8,
r2 = 12 = r1 + n. Then ρ0 = 2, ρ1 = 2 and the
Kronecker indices are k1 = 2, k2 = 2. So (E, A, B) ∼

(I4, A1, B1) with A1 =




0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0


, B1 =




0 0
1 0
0 0
0 1


.
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