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Abstract

Computed Tomography (CT) imaging faces limita-
tions, including low spatial resolution and noise, par-
ticularly in low-radiation-dose imaging. To address
these challenges, researchers are exploring CT image
reconstruction from sinogram data. Sinograms repre-
sent X-ray absorption throughout the body, and sophisti-
cated image reconstruction methods, including machine
learning algorithms and generative adversarial networks
(GANSs), can improve precision and resolution without
increasing patient radiation exposure.

This study proposes an iterative reconstruction ap-
proach that combines filters from deep learning mod-
els (Convolutional Neural Networks and UNet) with
the Maximum Likelihood Expectation Maximization
(ML-EM) algorithm and the Enhanced Super-Resolution
Generative Adversarial Networks (ESRGAN) model.
Our method aims to enhance image quality and re-
construction speed. Experimental results show signifi-
cant improvements in image quality and resolution, with
the proposed method (DL-MLEM-IR-UNET-ESRGAN)
achieving an average SSIM of 0.9980 and PSNR of
53.2119, outperforming other methods. Additionally,
our method reduces reconstruction time, with an average
runtime of 131 seconds.
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1 Introduction

Computed tomography (CT) has emerged as a cor-
nerstone in clinical diagnostics, revolutionizing the field
with its unparalleled ability to provide detailed internal
images. Its impact on treatment strategies and decision-
making across various medical disciplines has been pro-
found. However, despite its widespread use and diagnos-
tic benefits, concerns persist regarding the inherent ion-
izing radiation exposure associated with CT scans. Con-
sequently, ongoing research and development efforts are
dedicated to minimizing patient risk while preserving the
integrity and diagnostic utility of the images produced.

The initial approach to CT image reconstruction, pri-
marily utilizing filtered back projection, gained popular-
ity due to its computational efficiency and ability to pro-
vide rapid results, which are crucial for real-time imag-
ing during patient scans. However, despite these advan-
tages, its limitations became increasingly evident in low-
dose CT settings or when imaging patients with larger
body habitus. In such scenarios, the method often led to
heightened image noise and artifacts, thereby compro-
mising overall image quality and potentially impacting
diagnostic accuracy [Kalra, 2015; Granichin, 2018; Ero-
feeva, 2019; McLeavy, 2021; Tran, 2023].
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Iterative reconstruction (IR) algorithms have emerged
as a response to the limitations of traditional CT re-
construction methods. By employing a more sophisti-
cated approach to image processing, IR algorithms have
demonstrated a notable improvement in image quality,
particularly in low-dose CT scans. These algorithms ef-
fectively reduce image noise and enhance image clarity
[Pham, 2015]. Notably, Advanced Iterative Reconstruc-
tion (IR) methods have gained FDA (Food and Drug Ad-
ministration) approval for significantly reducing X-ray
dosage (ranging from 23 to 76%) without compromising
image quality.

The evolution of machine learning and deep learning
models has further propelled the development of model-
based IR methods, showing potential for even greater
reductions in X-ray dosage compared to hybrid IR and
FBP (Filtered Back Projection) methods [Willemink,
2019; Shin, 2021]. However, these methods have faced
criticism due to the altered texture and visual appearance
of the processed images, which some users describe as
having an unnatural, almost artificial look, raising con-
cerns about their acceptability in clinical practice.

The integration of artificial intelligence (Al), particu-
larly deep learning (DL), into CT imaging represents a
significant advancement in the field of radiology. DL-
based technologies, characterized by their ability to man-
age and analyze complex data models, have shown im-
mense potential in enhancing CT image reconstruction.
These methods can produce high-quality images at re-
duced radiation doses, overcoming the limitations of
both traditional and IR methods. Moreover, they of-
fer faster processing speeds, which are crucial in clin-
ical settings where time is often of the essence [Ak-
agi, 2019; Fallahpoor, 2024]. The ultimate goal of ad-
vancements in CT imaging, particularly those involving
Al and DL, is to achieve a delicate balance between re-
ducing radiation dose and maintaining, if not enhancing,
the diagnostic performance of CT scans. As the medi-
cal community strides towards this goal, the promise of
Al in image reconstruction emerges as a critical factor
in achieving high-quality imaging at significantly lower
radiation doses. This development signals the dawn of a
new era in CT imaging, potentially leading to the realiza-
tion of ultra-low-dose CT scans without compromising
diagnostic accuracy.

Acknowledging the pivotal role of deep learning net-
works and algorithms in advancing image reconstruction
techniques [Reader, 2023; Reader, 2024], we have un-
dertaken comprehensive studies and experiments to ex-
plore the application of algorithms and deep learning
models in the realm of image reconstruction. The pri-
mary contributions of our study encompass two main
aspects: developing a CT image reconstruction method
based on Sinogram images using IR with the Maximum
Likelihood Expectation Maximization (MLEM) algo-
rithm combined with the deep learning model UNet and

the Enhanced Super-Resolution Generative Adversarial
Networks (ESRGAN) model; and performing compara-
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tive analyses with other reconstruction methods.

The proposed method, which combines the MLEM
algorithm with the UNet and ESRGAN deep learning
models, has the potential to significantly improve CT im-
age reconstruction by producing high-quality images at
reduced radiation doses. This could lead to a reduction
in radiation exposure for patients, improved diagnostic
accuracy, and faster processing speeds, ultimately trans-
forming the field of CT imaging and improving patient
care.

This paper is organized as follows: In Section (2),
we discuss related studies and terminology. The pro-
posed method for solving the optimization problem is
presented in Section (3). Section (4) provides numerical
experiments to illustrate the outstanding performance of
our approach. Finally, the conclusions of this work are
drawn in Section (5).

2 Preliminaries

The projection process involves transforming CT im-
ages into their corresponding sinograms, as depicted in
Figure (1). The sinogram is generated through the rota-
tion of the CT scanner gantry, capturing multiple attenu-
ation profiles at various angles (along the x-axis). Each
profile represents a direct measurement of the X-ray ab-
sorption levels of tissues within the body, collected by
an array of detectors (along the y-axis). As the gantry
rotates, a point inside the patient is projected onto the
detectors as a sinogram curve through the Radon trans-
form. The collection of these curves forms the sinogram,
which serves as the foundational dataset for reconstruct-
ing the anatomical structures within the body [Schofield,
2020].

Examples CT slices and their simulated sinograms over a
180° acquisition [Schofield, 2020]

Figure 1.

The evolution of image reconstruction techniques, par-
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ticularly in computed tomography (CT), has progressed
through various phases of innovation, transitioning from
the initial Inverse Radon Transform to the more ad-
vanced Iterative Reconstruction (IR) methods, parallel-
ing the increasing computational power of computers
[Stiller, 2018; Ustaoglu, 2023].

The fundamental process of back projection in CT
imaging begins with the recording of X-ray absorption
levels as they pass through the body from various an-
gles. Each absorption profile, also known as a projec-
tion, is *projected’ back into the image space at the same
angle it was acquired. The quality of the reconstructed
image improves as the number of projections increases.
When a sufficient number of projections from various
angles are available, the absorbed data overlaps and be-
gins to create a sharper image, resembling the final im-
age in the back projection sequence. However, the sim-
ple back projection process has limitations, notably its
inability to distinguish different X-ray absorption points
along the same projection line. This limitation results in
blurriness, leading to an image reconstruction that lacks
sharpness and accuracy.

To address this issue, more advanced image recon-
struction algorithms, such as filtered back projection and
iterative reconstruction, have been developed, signifi-
cantly improving image quality. Iterative Reconstruction
(IR) methods are particularly noteworthy. IR methods
combine a data term, which models the observed projec-
tions, with a regularization term that accounts for sys-
tem nonuniformities and noise. Statistical IR introduces
a weighting term to prioritize reliable data during recon-
struction. Through iterative cycles of comparison and
correction, the image is progressively refined, enhanc-
ing details and reducing artifacts until a satisfactory re-
construction is achieved. This technique capitalizes on
powerful computing to handle the complexity of modern
CT system geometry and data characteristics, which was
not feasible in the early days of CT technology [Geyer,
2015; Stiller, 2018].

Filtered Back Projection (FBP) is a fundamental algo-
rithm used to reconstruct 2D images from a series of CT
scan projection profiles. This technique improves upon
basic back projection by applying a spatial frequency fil-
ter, typically a ramp filter, to the attenuation profiles be-
fore back projecting them into the image space. This
filtering step enhances high-frequency components as-
sociated with edges in the image, reducing blurriness
and emphasizing anatomical boundaries. As a result,
clearer images with improved structural details are pro-
duced [Schofield, 2020]. However, it’s important to note
that the FBP technique also amplifies noise present in
the raw data, which can make the reconstructed images
appear grainy or noisy. While FBP excels in reconstruct-
ing images quickly, which is advantageous for scanning
large volumes, the trade-off is the increased noise that
compromises spatial resolution improvements. More re-

cently, Model-Based Iterative Reconstruction (MBIR)
represents the cutting edge in this evolution [Willemink,

CYBERNETICS AND PHYSICS, VOL. 13, NO. 2, 2024

2019; Meyer, 2024].

Alongside these developments, modern deep learning
technologies have also made significant strides. Models
such as Convolutional Neural Networks (CNNs) [Roslin,
2023], UNets [Mizusawa, 2021], and Generative Ad-
versarial Networks (GANSs) [Fu, 2023; Liu, 2023] have
been developed and applied in various problem-solving
contexts. CNN models, in particular, have been em-
ployed as filters in traditional back projection meth-
ods, leading to the development of DL-enhanced ver-
sions like Deep Learned Filtered Backprojection (DL-
FBP), Deep Learned Filtered Backprojection then Filter-
ing (DL-FBP-F), and Deep Learned Backprojection then
Filtering (DL-BPF) [Hashimoto, 2022; Reader, 2024;
Tan, 2024]. An advanced framework for CT image re-
construction leverages deep learning (DL) techniques,
integrating them into the raw data acquisition process
to produce high-quality diagnostic images using artifi-
cial intelligence. The framework incorporates two neu-
ral networks in conjunction with traditional image recon-
struction methods such as Back Projection (BP) and For-
ward Projection (FP), enhancing the refinement of image
quality [Reader, 2024].

In DL-FBP, only the first DNN is employed to filter
the raw data, and the traditional back projection is used
afterward. The second DNN essentially performs an
identity operation, meaning it does not alter the back-
projected image further. This approach balances the use
of deep learning with the simplicity of traditional re-
construction methods, offering a middle ground between
complexity and image quality.

Meanwhile, the DL-FBP-F approach uses two deep
neural networks (DNNs). The first DNN processes the
raw measured data, enhancing it before the back projec-
tion. The back-projected image is then further refined
by the second DNN, using both the original data and the
forward-projected image to minimize reconstruction er-
rors. This dual-network approach aims to filter out noise
and improve image clarity more effectively than tradi-
tional methods. Finally, DL-BPF skips the initial deep
learning filtering stage (first DNN) entirely, directly us-
ing back projection on the raw data. Then, the second
DNN takes over to refine the back-projected image.

Another approach is the use of Maximum Likeli-
hood Expectation Maximization (ML-EM). ML-EM is
a method in statistics and machine learning often uti-
lized in medical imaging applications such as tomogra-
phy. The method comprises two steps: Maximum Likeli-
hood (ML) and Expectation Maximization (EM) [Yang,
2022]. ML-EM is commonly employed in reconstruct-
ing high-quality images of the distribution of radioactive
substances in the body. In the comprehensive investi-
gation conducted in [Da Costa-Luis, 2017], a ground-
breaking and inventive approach was developed for the
reconstruction of positron emission tomography (PET)
images. The study aimed to overcome the limitations
inherent in the conventional Maximum Likelihood Ex-
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pectation Maximization (ML-EM) method, with a spe-
cific focus on addressing the formidable challenge of re-
constructing intricate structures influenced by resolution
modeling.

The combination of IR and ML-EM is described in
Figure (2) [Fan, 2017; Yang, 2022; Rodriguez, 2023].
To address these challenges, the researchers in [Mizu-
sawa, 2021; Roslin, 2023; Fu, 2023; Xia, 2023; Reader,
2024] proposed an innovative post-processing step em-
ploying deep learning (DL) techniques, specifically uti-
lizing a Convolutional Neural Network (CNN) (Figure
3). This strategic integration aimed to significantly en-
hance overall image quality while simultaneously paving
the way for potential dose reduction in PET imaging—a
crucial advancement in the field. The ML-EM update
blocks will contain the Maximum Likelihood Expecta-
tion Maximization (MLEM) algorithm with the image
being reconstructed over k iterations. The initial image
is the input image having the same dimensions as the re-
constructed image (resulting from the back projection of
the sinogram image). The outcome of the method is the
reconstructed image after k iterations. An overview of
the differences between the mentioned methods and our
proposed method is provided in Table (1).

3 Proposed Method

Based on experimental results and comparisons of Al-
based image reconstruction methods [Reader, 2023], the
results indicate that ”Al methods without training data”
yield the poorest outcomes compared to the two methods
utilizing supervised learning on labeled datasets, and ap-
proach the performance of traditional methods like Max-
imum Likelihood Expectation Maximization (ML-EM).
From these results, we experimented and observed im-
provements in speed and quality when using supervised
learning to fine-tune the ESRGAN model for enhanc-
ing image quality. Additionally, incorporating the UNet
architecture into traditional methods like ML-EM en-
hanced convergence speed and ensured high accuracy in
the reconstructed images.

In this paper, we utilize the Maximum Likelihood Ex-
pectation Maximization (ML-EM) image reconstruction
method as the basis for our work. We have developed
an integrated approach that incorporates a deep learning
filter using UNet and enhances image resolution by fine-
tuning an ESRGAN model specifically designed for CT
image data.

Based on the structure of ML-EM integrated with CNN
(Figure 3), we aimed to improve the basic CNN model
(comprising convolutional layers and PReLU layers) by
transforming it into a UNet model. Additionally, we en-
hanced the model by improving the output image quality
using a fine-tuned ESRGAN deep learning model. We
refer to our method as DL-MLEM-IR-UNET-ESRGAN.

UNet is a convolutional neural network architecture
designed for biomedical image processing tasks. It con-
sists of a contracting path to capture context and a sym-
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metric expanding path that enables precise localization.
UNet’s architecture includes skip connections between
corresponding layers, aiding in the preservation of spa-
tial information and improving segmentation accuracy.
UNet has been widely used in various medical image
segmentation tasks, such as identifying organs, tumors,
or abnormalities in medical scans like MRI or CT images
[Ronneberger, 2015]. The improved UNet architecture
proposed in the paper is described in Table (2).

The UNet architecture includes an encoder, middle,
and decoder. The encoder part consists of two simple
convolutional layers and a max-pooling operator. In both
convolutional layers, we use a filter size of 3 x 3 with a
stride of 1 and output with 64 channels. Each convo-
lutional layer is followed by a ReLU (Rectified Linear
Unit) activation function. A max-pooling operator 2 X 2
with a stride of 2 is used after the convolutional layers.
The middle part consists of two convolutional layers,
each of which is followed by a filter size of 3 x 3 with a
stride of 1 and output with 128 channels. Finally, the de-
coder part includes a transposed convolutional layer and
a convolutional layer. In the transposed convolutional
layer, followed by a ReLU activation function, we use a
filter size of 2 x 2 with a stride of 2 and output with 64
channels. The convolutional layer includes 64 neurons
3 x 3 with a stride of 1 and output with 1 channel. The
structure of UNet is depicted in Figure (4).

The Enhanced Super-Resolution Generative Adversar-
ial Network (ESRGAN) represents a significant leap in
super-resolution image quality, building upon the foun-
dation of the Super-Resolution Generative Adversarial
Network (SRGAN). ESRGAN stands out due to its ad-
vanced architecture, which utilizes Residual in Resid-
ual Dense Blocks (RRDB) without batch normalization.
This enables the modeling of intricate textures, surpass-
ing the capabilities of SRGAN. It revolutionizes loss
functions by using pre-activation features to enhance
structure restoration and employing a perceptual GAN
loss to assess relative realism, resulting in more lifelike
textures [Wang, 2019].

The success of ESRGAN can be attributed to metic-
ulous refinements in its architecture and loss functions.
These modifications play a pivotal role in creating a ro-
bust and stable training process, thereby reducing the
dependency on extensive hyperparameter tuning. This
streamlined approach not only enhances the efficiency
of the training phase but also contributes to the overall
reliability of ESRGAN in delivering high-quality results
consistently.

One of the noteworthy features of ESRGAN is its ca-
pacity to set a new standard in super-resolution technol-
ogy. By pushing the boundaries of image enhancement,
it has become a beacon of excellence in the field. The
images produced by ESRGAN exhibit a level of realism
that was previously unparalleled, making it the preferred
choice for a wide array of applications (Figure 5).

The operational diagram illustrating the proposed DL-
MLEM-IR-UNET-ESRGAN method is shown in Fig-
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Table 1. An overview of the differences between the mentioned methods and our proposed method
Method Algorithm | Deep learning approach | Execution speed | Training data needs
FBP One step No Fast No
DL-FBP One step Yes Fast No
DL-BPF One step Yes Fast No
DL-FBP-F One step Yes Fast No
MLEM-IR Iterative No Slow No
DL-MLEM-IR Iterative Yes Fast No
DL-MLEM-IR-ESRGAN (ours) | Iterative Yes Fast Yes
Initial image
ML-EM ML-EM > ML-EM
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Figure 2. The iterative structure of ML-EM
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Figure 3. The iterative structure of ML-EM integrated with CNN

ure (7), which enhances image reconstruction from sino-
gram data. The method begins with a sinogram, which
undergoes a series of ML-EM updates through k itera-
tions, aiming to produce an initial reconstruction. Fol-

lowing ML-EM processing, the UNet, a deep learning
model (as shown in Table (2)), further refines the im-
age by reducing artifacts and improving structural de-
tails. This refined image then passes through the fine-
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tuned Enhanced Super-Resolution Generative Adversar-
ial Network (ESRGAN), which elevates the image res-
olution and sharpness. This process is reiterated for &
epochs, progressively enhancing the reconstruction. The
final output is a high-resolution, detailed reconstructed

image derived from the original sinogram input. The
ESRGAN model used in this study has been fine-tuned

from the pretrained RRDB-ESRGAN-x4 model [Wang,
2019] on the CT image BraTs20 dataset '
We utilized 3,880 high-quality CT images with a size

https://www.med.upenn.edu/cbica/brats2020/
data.html
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Table 2. Proposed U-Net Model

Stage Layer Kernel size
Encoder Conv2d(1,64),s1, ReLU 3
Encoder Conv2d (64,64)s1, ReLU 3
Encoder MaxPool2d, s2 2
Middle Conv2d (64,128), s1, ReLU 3
Middle Conv2d (128,128),s1, ReLU 3
Decoder ConvTranspose2d (128,64), s2, ReLU 2
Decoder Conv2d (64, 1), s1,ReLU 3

Total params 292417

Table 3. Comparison of Fine-Tuned Models’ Results
Model PSNR SSIM
RRDB_ESRGAN x4 (pretrained) 45.3524  0.9951
400 frozen layers + 10 epoch (finetuned)  41.8152  0.9981
500 frozen layers + 10 epoch (finetuned)  42.6025  0.9983
600 frozen layers + 10 epoch (finetuned)  45.4058  0.9983

of 369 x 369 pixels® and corresponding low-quality im-
ages, automatically resized to a resolution of 90x90 pix-
els, for fine-tuning. With a total of 702 layers in the pre-
trained model, we experimented with three cases of fine-
tuning with frozen layers, including 400, 500, and 600
frozen layers. We selected the fine-tuned model with 600
frozen layers as it produced the best results compared to
the model without fine-tuning (as shown in Table 3).

2https://github.com/pacotha/Dataset_
CT-images_.git

4 Experiments

The results were obtained by calculating the average
PSNR and SSIM [Bovik, 2006], after testing on an eval-
uation image dataset’. Some images from the dataset
will be displayed in Figure (8). The SSIM formula used
for evaluation is as follows:

(QNwNy + Cl)(zgwy + ¢c2)

SSIM(zx,y) =
)= Gar 2 e + o+ )

(D

where i, pi,, are the mean values of images x and y,
respectively. o, 0, are the standard deviations of im-
ages x and y, respectively, o, is the cross-covariance
between z and y, and ¢q, co are two constants. These fac-
tors help SSIM provide an overall assessment of the sim-
ilarity between the structures of two images, consider-
ing not only brightness and color but also examining the
structure and transformations within the images. PSNR
(Peak Signal-to-Noise Ratio) is defined through Mean
Squared Error (MSE). MSE is a statistical concept, rep-
resenting the average of the squared differences between
estimates and the ground truth. PSNR is calculated as
follows:

MAX? MAX
PSNR = ].0 10g10 (M) = 20 ].Oglo (\/Mis’IE’)

where MAX is the maximum value of a pixel in the im-
age, typically 255 for an 8-bit image. MSE is the Mean
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Squared Error, the average of the squared differences be-
tween corresponding pixels of the two images:

m—1n—1

MSE = % > D M 5) - K )P

i=0 j=0

where m and n are the dimensions of the image (number
of rows and columns). I(4,7) is the value of the pixel
at row ¢ and column j in the original image. K (i,7) is
the value of the corresponding pixel in the comparison
or result image.

We trained for 2600 epochs using Mean Squared Er-
ror (MSE) loss. The experimental dataset comprises CT
images obtained from the evaluation dataset. These im-
ages were preprocessed into 2D images with dimensions
of 90x90 pixels and then forward-projected to create in-
put images for the methods. The detailed content of the
experimental methods is described in Table (4). A vi-
sual depiction of the experimental process is encapsu-
lated in Figure (6), which features 10 representative im-
ages from the experimental dataset alongside their corre-
sponding reconstructions. The architectures of the CNN
and UNET models used are illustrated in Figures (4) and
(6), as described in Table (2).

Table 4. Details of the Experimental Methods

Abbreviation Method
DL-FBP FBP + CNN
DL-FBP-F FBP-F + CNN
DL-BPF BPF + CNN
ML-EM-IR IR
DL-ML-EM-IR IR + CNN
DL-ML-EM-IR-UNET IR+ U-Net

DL-ML-EM-IR-UNET-ESRGAN IR + U-Net+ ESRGAN

The experimental evaluation of the proposed meth-
ods is comprehensively presented in Tables (5) and
(6), showcasing PSNR and SSIM values across the
distinct methods as follows: DL-FBP, DL-FBP-F,
DL-BPF, ML-EM-IR, DL-ML-EM-IR, DL-ML-EM-IR-
UNET (Ours without ESRGAN), and DL-ML-EM-IR-
UNET-ESRGAN (Ours with ESRGAN). Corresponding
to each method, the labels A, B, C, D, E, F, G, H, I, J
are assigned to represent the individual images within
the experimental dataset. Table (7) consolidates the av-
erage PSNR, SSIM, and runtime values derived from the
experimental outcomes.

The methods that do not use ESRGAN (DL-FBP-F,
DL-BPF, ML-EM-IR, DL-ML-EM-IR, DL-ML-EM-IR-
UNET) were built based on the source code and methods
mentioned in the Preliminaries section. The architec-
tures were constructed and tested in the same setup en-
vironment to ensure fairness among the methods. Deep
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learning models such as CNN and UNet were optimally
selected during the experimentation process, and the
methods all use the same CNN or UNet architecture. The
experiments were executed on Google Colab, leveraging
a GPU T4, with a standardized configuration of 2600 it-
erations. Notably, both input and reconstructed images
adhered to dimensions of 90 x 90 pixels.

Methods incorporating deep learning techniques, par-
ticularly those utilizing U-Net and ESRGAN, demon-
strate superior results in both structural similarity index
(SSIM) and peak signal-to-noise ratio (PSNR). Notably,
the DL-ML-EM-IR-UNET-ESRGAN method achieves
the highest SSIM (0.9980) and PSNR (53.2119), indica-
tive of superior reconstruction quality.

Compared to the baseline DL-FBP method, all tech-
niques exhibit improvements in SSIM and PSNR, with
the exception of DL-FBP-F and DL-BPF. However,
computational efficiency varies among methods, with it-
erative reconstruction (IR) methods like ML-EM-IR re-
quiring the longest runtimes. Conversely, approaches
combining IR with U-Net, such as DL-MLEM-IR-
UNET and DL-ML-EM-IR-UNET-ESRGAN, strike a
balance between performance and runtime efficiency.
These findings underscore the effectiveness of hybrid
methodologies, emphasizing the potential of integrat-
ing iterative reconstruction with advanced deep learning
architectures to achieve high-quality image reconstruc-
tions in a computationally efficient manner.

The proposed method DL-ML-EM-IR-UNET-
ESRGAN emerges as a compelling approach, offering
the highest levels of image reconstruction quality as
evidenced by its superior SSIM and PSNR scores.
Moreover, its relatively modest runtime signifies a
favorable balance between computational efficiency
and reconstruction performance. This highlights the
method’s potential as a practical solution for high-
fidelity image reconstruction tasks, underscoring the
significance of integrating iterative reconstruction
techniques with advanced deep learning architectures
like U-Net and ESRGAN.

5 Conclusion

In this paper, we have proposed a method that com-
bines the potential of Iterative Reconstruction techniques
with the ML-EM algorithm, alongside the U-Net deep
learning model and the ESRGAN model. The re-
search results demonstrate the superior capabilities of
this method, as the U-Net model significantly improves
reconstruction time while maintaining high accuracy be-
tween the reconstructed image and the original image.
Furthermore, the involvement of image generation mod-
els like ESRGAN enhances the quality of the recon-
structed images. The comparison results also show that
the IR image reconstruction technique outperforms older
techniques like FBP, FBP-F, and BPF, even though all
of them apply deep learning models to reconstruction.
The research also highlights the potential application of
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Figure 8. CT images extracted from the experimental dataset

Table 5. SSIM results during experimental process

Image DL-FBP DL-FBP-F DL-BPF ML-EM-IR DL-ML-EM-IR  Ours (Unet)  Ours (Unet+ESRGAN)

A 0.8869 0.7102 0.5884 0.9942 0.9932 0.9983 0.9956
B 0.8757 0.7056 0.5952 0.9992 0.9963 0.9985 0.9993
C 0.8823 0.711 0.5874 0.9965 0.9977 0.9950 0.9991
D 0.8735 0.7035 0.5802 0.9983 0.9946 0.9962 0.9976
E 0.8703 0.7068 0.5729 0.9977 0.9952 0.9971 0.9988
F 0.8726 0.7341 0.6015 0.9952 0.9948 0.9974 0.9976
G 0.8815 0.7118 0.6041 0.9956 0.9974 0.9968 0.9978
H 0.8747 0.7076 0.5905 0.9994 0.9982 0.9986 0.9969
I 0.8763 0.7102 0.5809 0.9981 0.9954 0.9969 0.9981
J 0.8725 0.7037 0.5787 0.9993 0.9966 0.9972 0.9988
Average 0.8766 0.7105 0.5301 0.9974 0.9959 0.9972 0.9980

Table 6. PSNR results during experimental process

Image DL-FBP DL-FBP-F DL-BPF ML-EM-IR DL-ML-EM-IR  Ours (Unet)  Ours (Unet+ESRGAN)

A 29.0838 29.0547 24.7382 52.1824 46.1259 51.8272 53.1852

B 29.8876 28.7805 24.1236 52.6621 46.1351 52.5388 53.2863

C 30.1794 28.7764 24.6512 52.4982 45.8926 51.8783 52.8956

D 29.8932 28.9321 24.4345 52.6749 45.7639 52.0095 53.1269

E 29.9892 28.8763 24.3442 52.1299 46.1006 51.8342 53.1008

F 29.5928 28.8632 24.7327 52.8861 45.9821 52.4981 53.4561

G 29.6511 29.0051 24.4852 52.3786 45.8782 52.1194 53.4562

H 29.932 28.7563 24.8214 52.6712 46.1006 52.3242 52.8968

I 29.7452 29.0023 24.6731 52.4251 46.1118 52.1191 53.1248

J 30.1265 28.8761 24.6651 52.7382 45.7425 52.3224 53.5901

Average  29.8081 28.8923 24.5669 52.5247 45.9833 52.1471 53.2119
deep learning models in CT image reconstruction meth- associated with the implementation of the U-Net and
ods to improve image quality and reduce radiation expo- ~ ESRGAN models is relatively high, which may hinder
sure during the imaging process. real-time application and widespread clinical adoption.

Despite the promising results, the proposed method  Secondly, the training process requires a large dataset of
has several limitations. Firstly, the computational cost  high-quality images, which may not always be available,
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Figure 9. Comparison of the reconstruction results (2600 iterations) obtained by compared methods

especially in specific medical imaging contexts. Addi-
tionally, the method’s performance has been evaluated
on a limited dataset, and further validation on diverse
datasets is needed to ensure robustness and generaliz-
ability.

Future research should focus on optimizing the com-
putational efficiency of the proposed method, potentially
through model compression techniques or the use of
more efficient architectures. Expanding the dataset and
including more diverse imaging conditions in the train-
ing process will be essential to enhance the method’s
generalizability. Moreover, integrating this approach
with other advanced techniques, such as attention mech-

anisms or hybrid models, could further improve image
reconstruction quality. Lastly, clinical trials and real-
world testing should be conducted to validate the practi-
cal benefits of the method in reducing radiation exposure
and improving diagnostic accuracy in medical imaging.
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Table 7. Average Results of comparing the experimented methods during experimental process

Method SSIM PSNR  Runtime (s)
DL-FBP 0.8766  29.8081 139
DL-FBP-F 0.7105 28.8923 144
DL-BPF 0.5301 24.5669 193
MLEM-IR 0.9974  52.5247 1705
DL-MLEM-IR 0.9959 45.9833 239
DL-MLEM-IR-UNET 0.9972  52.1471 124
DL-MLEM-IR-UNET-ESRGAN 0.9980 53.2119 131
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