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Abstract
We show that in delay-coupled networks of chaotic

Rössler systems local stabilization of unstable periodic
orbits and global synchronization of these orbits is si-
multaneously possible. Based on the well-know speed
gradient method of control theory, we derive an adap-
tation algorithm to tune the feedback gain and the cou-
pling strength. Our simulations show that this algo-
rithm finds appropriate values for achieving stabiliza-
tion and synchronization in small ring networks. Even
in the case of disturbance by noise the algorithm can be
successfully applied.
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1 Introduction
Over the past decades the control of nonlinear dy-

namical systems has evolved into a wide interdisci-
plinary area of research [Schöll, Schuster, 2007]. This
field has various aspects comprising stabilization of
unstable periodic orbits embedded in a deterministic
chaotic attractor, which is generally referred to as chaos
control, stabilization of unstable fixed points (steady
states), or control of the coherence and timescales of
stochastic motion. One scheme where the control
force is constructed from time-delayed signals [Pyra-
gas, 1992] has turned out to be very robust and uni-
versal to apply, and easy to implement experimen-
tally. It has been used in a large variety of sys-
tems in physics, chemistry, biology, medicine, and
engineering [Pyragas, 2006; Schöll, Schuster, 2007],
in purely temporal dynamics as well as in spatially
extended systems [Kim et.al.,2001; Baba et.al.,2002;
Schlesner et.al.,2003; Postlethwaite and Silber,2007;

Ahlborn and Parlitz,2008; Kehrt et.al.,2009; Kyrychko
et.al.,2009]. In time-delayed feedback control (time–
delay autosynchronization) the control signal is built
from the difference s(t)− s(t− τ) between the present
and an earlier value of an appropriate system variable
s. It is non-invasive since the control forces vanish if
the target state (a periodic state of period τ or a steady
state) is reached. Thus the unstable states themselves
of the uncontrolled system are not changed, but only
their neighbourhood is adjusted such that neighbour-
ing trajectories converge to it, i.e., the control forces
act only if the system deviates from the state to be sta-
bilized. Involving no numerically expensive computa-
tions, time-delayed feedback control is capable of con-
trolling systems with very fast dynamics still in real-
time mode, and detailed knowledge of the target state
is not required.
Moreover, control of dynamics on delay-coupled net-

works has recently gained much interest. Synchro-
nization phenomena in networks are of great impor-
tance [Pikovsky et.al.,2001] in many areas ranging
from physics and chemistry to biology and engineering.
In general, the stability depends in a complicated way
on the local dynamics of the nodes and the coupling
topology. In-phase (zero-lag) synchronization as well
as various cluster synchronization states, where certain
clusters inside the network show isochronous synchro-
nization, can be realized by tuning the coupling param-
eters such as the coupling phase, coupling strength, and
delay time [Choe et.al.,2009; Dahms et.al., 2012].
To find appropriate values of these control parame-

ters, the speed-gradient method [Fradkov, 1979; Frad-
kov, 2005; Fradkov, 2007] from control theory can be
applied to stabilize a desired unstable state [Guzenko
et.al., 2008; Lehnert et.al., 2011] or to achieve a de-
sired state of generalized synchrony (adaptive synchro-
nization) in a network of periodic Stuart-Landau oscil-



lators [Selivanov et.al.,2012; Schöll et.al.,2012]. Here
we apply the speed-gradient method to a delay-coupled
network of chaotic Rössler systems to find appropriate
values of the delayed feedback strength and the cou-
pling constant to suppress chaos and stabilize unstable
periodic states.

2 Stabilization and synchronization of periodic or-
bits in small networks of Rössler systems

2.1 Control of a single Rössler system
In this Section, we discuss the control of a single

uncoupled Rössler system with time-delayed feedback
control [Pyragas, 1992; Balanov et.al., 2005]. We
use the Rössler model since it can be considered as
paradigmatic for chaotic system. Without control, it ex-
hibits chaotic oscillations born via a cascade of period-
doubling bifurcations. The system with delayed feed-
back reads:

ẋ = −y − z −K[x(t)− x(t− τ)]

ẏ = x+ ay (1)
ż = b+ z(x− µ)

where K is the self-feedback coefficient and τ is the
delay time. We consider the system at the parameter
values a = 0.2, b = 0.2, µ = 6.5. All quantities
used in this paper are dimensionless. For K = 0 and
these parameters, Eq. (1) exhibits a chaotic attractor, as
depicted in the top panel of Fig. 1. The unstable pe-
riodic orbits (UPO) embedded in this chaotic attractor
can be stabilized with the appropriate choice of K and
τ , where τ has to be equal to the period of the UPO
to be stabilized. For instance, unstable periodic orbits
with periods T1 ≈ 5.91679 (”period-1 orbit”, see Fig. 1
bottom) and T2 ≈ 11.82814 (”period-2 orbit”) exist
and can be stabilized. In Ref. [Just et.al., 1997] it has
been analytically predicted by a linear expansion that
the control is successful only in a finite range of K
values: at the lower control boundary the limit cycle
undergoes a period-doubling bifurcation, and at the up-
per boundary a Hopf bifurcation generating a stable or
an unstable torus from a limit cycle (Neimark-Sacker
bifurcation). For instance, application of the delayed
feedback with τ = T1 and 0.24 < K < 2.3 stabilizes
the period-1 orbit.
In the following, we will assume that the value of τ is

known and appropriately chosen. Following previous
work [Guzenko et.al., 2008; Lehnert et.al., 2011], we
use the speed gradient (SG) method to find an adapta-
tion algorithm for K (with zero initial condition). The
speed-gradient method is a well known adaptive con-
trol technique which minimizes a predefined goal func-
tion by changing an accessible system parameter ap-
propriately. The adaptation of the feedback gain may
be useful for systems with unknown or slowly changing
parameters as in these cases an analytical calculation of
an appropriate value of K is not possible.
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Figure 1. Chaotic attractor (top) and stabilized period-1 orbit (bot-
tom) for the uncoupled Rössler system (Eq. (1)). System parame-
ters: a = 0.2, b = 0.2, µ = 6.5. Feedback control with
τ ≈ 5.91679 is used in the bottom panel.

To obtain a speed-gradient adaptation algorithm for
the feedback gain K let us choose the goal function
as follows: Q(x) = 1

2 (x(t) − x(t − τ))2. The SG-
algorithm in the differential form is given by K̇ =
−γ∇KQ̇, where γ > 0 is the adaptation gain. In the
case of successful control, the SG-algorithm ensures
Q(x(t))→ 0 for t→ +∞.
For system (1), we obtain:

Q̇ = (x(t)− x(t− τ))(ẋ(t)− ẋ(t− τ)),

ẋ(t) = −y(t)− z(t)−K[x(t)− x(t− τ)]

ẋ(t− τ) = −y(t− τ)− z(t− τ)− (2)
− K[x(t− τ)− x(t− 2τ)]

K̇ = γ(x(t)−x(t− τ))[x(t)− 2x(t− τ) +x(t− 2τ)]
(3)

Previous studies [Guzenko et.al., 2008; Lehnert et.al.,
2011] show that this adaptation algorithm converges to
some appropriate value of K stabilizing the period-1
orbit. In the following, we will investigate whether the
adaptation of K can be used to suppress chaos not only
in a single uncoupled node but also in delay-coupled
networks of chaotic Rössler systems.

2.2 Networks of Rössler systems
Next, we consider a network of delay-coupled chaotic

Rössler oscillators and apply local time-delayed feed-
back control with feedback strength Kj to each node
j. Let N be the number of nodes and let A = (ajk)
be the coupling matrix. We set ajj = 0 and assume a
constant row sum equal to unity, i.e.,

∑
k ajk = 1 for

k = 1, . . . , N . The dynamics is given by (j = 1, .., N ):



ẋj = −yj − zj −Kj [xj(t)− xj(t− τ)] +

+ c

N∑
k=1

ajk[xk(t− τ)− xj(t)]

ẏj = xj + ayj (4)
żj = b+ zj(xj − µ),

where c is the overall coupling strength.
Each node in the network has its own adaptation algo-

rithm for Kj (with zero initial condition Kj(0) = 0):

K̇j = γ(xj(t)− xj(t− τ))[xj(t)−
−2xj(t− τ) + xj(t− 2τ)]

(5)

In the following we will focus on unidirectional rings,
i.e, the coupling matrix is given by

A =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
1 0 0 . . . 0


We proceed as follows: In Section 2.3 we discuss the

adaptation of K in small ring networks with the goal to
stabilize the period-1 orbit. We investigate the range of
the coupling constant c for which not only stabilization
but also synchronization occurs. Section 2.4 extends
our method by an additional adaptation algorithm for
c. In Section 2.5, we present a slight modification of
our algorithm which improves synchronization in cases
where the period of the UPO is not exactly known. Fur-
thermore, we conduct a linear stability analysis for this
case. Finally, in Section 3 we modify our method in
order to deal with noisy measurement.

2.3 Adaptation of the self-feedback in small ring
networks

First we consider the smallest unidirectional ring net-
work: a ring composed of 2 nodes. Figure 2 shows the
successful adaptation of the two self-feedback coeffi-
cients K1 and K2 according to Eq. (5). If the control
goal is reached, the adaptation of K stops. This fol-
lows from Eq. (5): K̇j = 0 for xj(t) = xj(t− τ); this
shows up in Fig. 2 for t > 500. The fact that K1 and
K2 approach different values is due to different initial
conditions for node 1 and 2.
Computer simulations show that for different initial

conditions x1(0) = 2, y1(0) = ±2, x2(0) = ±2,
y2(0) = ±2, (4 combinations for two nodes, z1 =
z2 = 0 always) and γ = 0.05, 0.07, the two nodes syn-
chronize in the following range of c: c ∈ [0.2, 0.8] (for
c = 0.9 the system diverges). We define the maximal
synchronization error in x as εx ≡ maxi,t>tc |xi(t) −
x(i+1) mod N (t)|, i = 0, . . . , N where tc is a suffi-
ciently large time when convergence is reached. Anal-
ogously we define εy and εz . We assume the network
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Figure 2. (Color online) K1(t) (red solid), K2(t) (blue dashed)
adapted according to Eq. (4,5) for a 2-node network with (x0, y0)
= (2, 2) and (2,−2); z0 = 0. System parameters: a = 0.2,
b = 0.2, µ = 6.5, τ ≈ 5.91679, γ = 0.05.
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Figure 3. (Color online) Differences x1− x2 (blue dash-dotted) ,
y1 − y2 (red dashed) and z1 − z2 (green solid) vs time t adapted
according to Eqs. (4) and (5). System parameters as in Fig. 2.

as synchronized if εx, εy, εz < 0.02, which is very
roughly 100 times less than the corresponding differ-
ences without coupling. Note that for the period-1 or-
bit the following estimates hold: x(t) ∈ [−8; 10.5],
y(t) ∈ [−9.5; 6.9], z(t) ∈ [0.014; 8.6]. Figure 3 shows
the synchronization error for N = 2. As can be seen,
synchronization in the above sense is reached.
Perfect synchronization is not reached because in nu-

merical simulations it is usually not possible, due to
the finite integration step, to choose the time delay
exactly equal to the period of the system. If τ =
T +δ, where δ is some small positive or negative quan-
tity, the local control of the i-th node, i.e., the term
Ki(xi(t) − xi(t − τ)), does not vanish completely if
the UPO with period T is stabilized. Because the Ki

have different values after adaptation, a slightly differ-
ent orbit is induced in every node and perfect synchro-
nization is not possible.
Now we investigate the persisting synchronization er-
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Figure 4. (Color online) Self-feedback coefficients
K1(t), ...,K8(t) adapted according to Eqs. (4) and (5) for
8 nodes coupled in a unidirectional ring. System parameters as in
Fig. 2.

ror for networks with N = 4 nodes. Computer simu-
lations (not shown here) yield that for different initial
conditions and γ = 0.05, c = 0.3, 0.7, 0.8 the nodes
are synchronized in the sense discussed above (for
c = 0.3 with εx=0.03, εy=0.02, εz=0.04; for c = 0.7
with εx=0.009, εy=0.007, εz=0.012; for c = 0.8 with
εx=0.007, εy=0.005 and εz=0.010). Thus increasing
the coupling coefficient inside the convergence range
leads to increase of the accuracy of synchronization.
Next, we test our algorithm for larger networks of
N = 5, 8, 12, 13 and 16 nodes. For 5 to 13 nodes,
combinations of γ and c exist for which successful syn-
chronization is possible. For a unidirectional ring of 16
nodes all attempts to find appropriate values of γ and c
to synchronize the network failed although local stabi-
lization still was achieved. In general, with an increas-
ing number of nodes, the values of γ and c decrease as
well as the range of these parameters suitable for con-
trol.
As an example for the control of a network with N >

2, we present the control of a network with 8 nodes.
Figure 4 shows the time series for the self-feedback
coefficients K1(t), . . . ,K8(t) and Fig. 5 shows the fi-
nal synchronization accuracy (8 differences between
y-coordinates ). For γ = 0.05, c = 0.3, 0.7 our
nodes are synchronized in the sense discussed above,
and εx=0.015, εy=0.013, εz=0.024. For a unidirec-
tional ring network composed of 12 nodes similar re-
sults were obtained.
For a unidirectional ring network composed of 13

nodes, it was found that for γ = 0.025 and c =
0.25...0.95 the nodes are synchronized in the sense dis-
cussed above (as well as for γ = 0.02), but for c = 1.2
the system diverges. For γ = 0.03 there are no appro-
priate values for c. For γ = 0.01 the period-1 orbit is
stabilized in all nodes, but synchronization with appro-
priate accuracy is not found. Synchronization in a ring
of 13 nodes was achieved with the following accuracy:
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Figure 5. (Color online) Differences ∆j = y(j+1) − yj , j =
1, . . . , 7, ∆8 = y1 − y8 vs time t adapted according to Eqs. (4)
and (5) for 8 nodes coupled in a unidirectional ring. γ = 0.025.
Other parameters as in Fig. 2.
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Figure 6. (Color online) Differences ∆j = xj+1 − xj , j =
1, . . . , 12, ∆13 = y1 − y13 vs time t adapted according to
Eqs. (4) and (5) for 13 nodes coupled in a unidirectional ring. System
parameters as in Fig. 2.

εx=0.023, εy=0.017, εz=0.03 (see Fig.6).

2.4 Adaption of self-feedback coefficients and
coupling strength

As discussed in the previous Section, synchronization
and stabilization is only feasible if the coupling coef-
ficient c is chosen appropriately. In this Section, we
show that it is possible to obtain the appropriate value
of c by adapting c in addition to adapting K1, . . . ,KN .

To obtain a speed-gradient adaptation algorithm for
the coupling coefficient c, we choose a goal function
based on the state of two nodes as follows: Qc(x) =
1
2 (x1(t) − x2(t − τ))2. According to the SG-method,
i.e., K̇j = −γc∇cQ̇Kj and ċ = −γc∇cQ̇c we obtain
for the simultanous adaptation of K1, . . . ,KN and c in
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Figure 7. (Color online) Self-feedback coefficients
K1(t), . . . ,K10(t) vs time t for 10-nodes coupled in a
unidirectional ring. Adaptation algorithm according to Eq. (6).
γ = 0.015, γc = 0.0005. Other parameters as in Fig. 2.

a ring with 2 nodes (ajj = 0):

ẋj = −yj − zj −Kj [xj(t)− xj(t− τ)] +

+c(t)[x(k+1) mod 2(t− τ)− xj(t)]
ẏj = xj + ayj

żj = b+ zj(xj − µ) (6)

K̇j = γ(xj(t)− xj(t− τ))[xj(t)− 2xj(t− τ) +

+xj(t− 2τ)], j = 1, .., N

ċ(t) = γc(x1(t)− x2(t− τ))[x1(t)− 2x2(t− τ) +

+x1(t− 2τ)]

It was found that for unidirectional rings this algo-
rithm not only works forN > 2 but also for larger ring,
e.g., of 5 or 10 nodes. It ensures the convergence of c
to some appropriate value while all local coefficients
Ki converge each to its own value stabilizing the un-
stable period-1 orbit in the local node. The adaptation
process synchronizes the network with the appropriate
accuracy.
The simulation results for 10 nodes are shown in .. 7-

9: Figure 7 and 8 show the time series for K1, . . . ,K10

and c, respectively. Figure 9 depicts the synchro-
nization accuracy for t ∈ [0, 800] (top) and t ∈
[1500, 1580] (bottom), respectively. From the small
synchronization error for t > 1500 we conclude that
synchronization is achieved.

2.5 Modification of the adaptation algorithm to
improve synchronization

As shown in the previous Section, the final values of
the self-feedback coefficients K1, . . . ,KN differ due
to the different initial states of the nodes. As already
discussed, this leads to a non-vanishing synchroniza-
tion error in the case that τ is not perfectly equal to
the period of the stabilized orbit, which is usually the
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Figure 8. (Color online) Coupling coefficient c(t) vs time t for
10-nodes coupled in a unidirectional ring. Adaptation algorithm ac-
cording to Eq. (6). γ = 0.015, γc = 0.0005. Other parameters
as in Fig. 2.

0  200 400 600 800
−10

−8

−6

−4

−2

0

2

4

6

8

10

t

∆
j, 

j=
1

..
1

0

 

 

∆
1
(t)

∆
2
(t)

∆
3
(t)

∆
4
(t)

∆
5
(t)

∆
6
(t)

∆
7
(t)

∆
8
(t)

∆
9
(t)

∆
10

(t)

1500 1520 1540 1560 1580
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

t

∆
j, 

j=
1
..
1
0

Figure 9. (Color online) Differences ∆j = yj+1 − yj , j =
1, . . . , 9, ∆10 = y1 − y10 (top) and their final values (bottom)
vs time t for 10-nodes coupled in a unidirectional ring. Adaptation
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Other parameters as in Fig. 2.
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Figure 10. (Color online) Common self-feedback coefficientK(t)
and coupling coefficient c(t) vs t for 5-nodes coupled in a uni-
directional ring. Adaptation according to Eq. (7). γ = 0.05,
γc = 0.0005. Other parameters as in Fig. 2.

case in experimental situations and even in numerical
simulations.
The synchronization error can be decreased if

all self-feedback coefficients K1, . . . ,KN are cho-
sen equal and are adapted at the same rate, i.e.,
K1(t), . . . ,KN (t) = K(t). The local adaptation algo-
rithm of each Ki, as discussed in Section 2.3, is based
only on the state variable xi. The main idea of the mod-
ification proposed here is to use the arithmetic mean of
the right-hand side of Eq. (5). Then, the SG-algorithm
for a network of N nodes reads:

ẋj = −yj − zj −K(t)[xj(t)− xj(t− τ)] +

+c(t)

N∑
k=1

ajk[xk(t− τ)− xj(t)]

ẏj = xj + ayj

żj = b+ zj(xj − µ) (7)

K̇(t) = γ
1

N

N∑
j=1

(xj(t)− xj(t− τ)) ·

·[xj(t)− 2xj(t− τ) + xj(t− 2τ)]

ċ(t) = γc(x1(t)− x2(t− τ))[x1(t)− 2x2(t− τ) +

+x1(t− 2τ)]

Our simulation results show that at least for 5 nodes
coupled in a unidirectional ring almost perfect synchro-
nization can be achieved: The time series of K(t) and
c(t) are depicted in Fig. 10; the synchronization error
is shown in Fig. 11. The final accuracy of synchro-
nization is εx=2·10−14, εy=2·10−14, εz=5·10−14 and
therefore several order of magnitude smaller than in the
case of adapting each of the Ki separately, as was done
in Section 2.3.

Linear stability analysis For the system given by
Eq. (7), we carry out a linear stability analysis which
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Figure 11. (Color online) Differences ∆x
j = xj+1 − xj , j =

0, . . . , 4, ∆x
5 = x1 − x5 vs time t for 5 nodes coupled in a

unidirectional ring. Adaptation according to Eq. (7). γ = 0.05,
γc = 0.0005. Other parameters as in Fig. 2.

can be used to predict to which values K and c should
converge for successful synchronization in the periodic
state. The synchronized and periodic solution Xs ≡
(xs, ys, zs,Ks, cs) of Eq. (7) is given by:

ẋs(t) = −ys(t)− zs(t)
ẏs(t) = xs(t) + ays(t)

żs(t) = b+ zs(t)[xs(t)− µ]

K̇s = 0

ċs = 0.

(8)

Thus,Ks and cs are just constants. We linearize Eq. (7)
around this solution to obtain a variational equation:

ξ̇ = 1N ⊗ [Df(Xs(t))ξ +KsHξτ ]

+csA⊗Hξτ (9a)
δ̇K = 0 (9b)
δ̇c = 0, (9c)

where ξ = (x1−xs, y1−ys, y1−ys, . . . , xN−xs, yN−
ys, yN − ys), δK = K − Ks and δc = c − cs. The
Jacobian matrix Df(Xs(t)) is given by:

Df(Xs(t)) =

−(Ks + cs) −1 −1
1 a 0
zs 0 xs − µ

 (10)

H describes the coupling scheme of the three variables
x, y, z, which is identical for cross-coupling and self-
coupling:

H =

 1 0 0
0 0 0
0 0 0

 (11)



Eq. (9a) can be blockdiagonalized to obtain a Master
stability equation [Pecora and Caroll, 1998].

δ̇X = Df(Xs(t))δX + (Ks + csνk)HδXτ(12a)
δ̇K = 0 (12b)
δ̇c = 0 (12c)

where δX ∈ R3 describes the deviation from the syn-
chronized state in the eigensystem of A, and νk are the
eigenvalues of A. Thus in the case of a unidirectional
ring: νk = e

2πi
N k with k = 1, . . . , N . From Eq. (12a)

the largest Lyapunov exponent Λ(νk) can be calculated
numerically for all k = 1, . . . , N . ν0 ≡ νN is called
the longitudinal eigenvalue since it describes deviations
longitudinal to the synchronized orbit. Thus, its value
is determined by the type of the synchronized dynam-
ics: If the synchronized orbit is periodic, then Λ(ν0) =
0 holds, whereas for chaos synchronization the longi-
tudinal Lyapunov exponent is positive: Λ(ν0) > 0. All
other eigenvalues νk describe deviations transversal to
the synchronization manifold. Hence, for stable syn-
chronization Λ(νk) < 0, k = 1, . . . , N − 1, must hold.
From Eq. (12a) we calculate Λ(ν0) (Fig. 12 (top)) and
max
k

Λ(νk) (Fig. 12 (bottom)). In Fig. 12 (top) all val-

ues with |Λ(ν0)| < 0.002 are approximately set to 0
and colored in black. Hence, the black region in Fig. 12
(top) indicates periodic behavior in the synchronization
manifold. The blue region in Fig. 12 (bottom) indicates
that the largest longitudinal Lyapunov exponent is neg-
ative, i.e., the synchronization is stable. The red full
circle marks the final values of K and c reached in the
adaptive simulation presented in Fig. 10. The location
of this circle inside the black region (top panel) and the
blue region (bottom panel) confirms that stabilization
of a periodic orbit and synchronization are achieved si-
multaneously. Note that Equations (12b) and (12c) de-
scribe the shift invariance of the system along the K
and c axis. Therefore, the additional Lyapunov expo-
nents, which arise if we consider Eqs. (12a)-(12c) in-
stead of only Eq. (12a) are equal to zero and are not
decisive for stability.

3 SG adaptation algorithm for noisy measure-
ments

In experiments and engineering applications, the ex-
act state of a system is usually unknown. In this Sec-
tion We present a modification of our algorithm for ap-
plications in noisy environments. As in Section 2.5,
we consider a network of N nodes coupled in a unidi-
rectional ring with simultaneous adaptation of K and
c. However, we assume that for the adaptation algo-
rithms the exact values of the x-coordinates are un-
known, i.e., we have only noisy measurements hi(t) =
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Figure 12. (Color online) Density plot of the stability regime in
the (K, c) parameter space: The Master stability function evalu-
ated at the longitudinal (top) and the dominant transversal (bottom)
eigenvalue of the coupling matrix is plotted for the Rössler system:
Λ(ν0) > 0 (top) and max Λ(νk) (bottom) calculated from
Eq. (12a). System parameters as in Fig. 2. The red full circle marks
the final values of K and c which are reached by the adaptive simula-
tion presented in Fig. 10.

xi(t) +Dξi(t), i = 1, . . . , N of the variables xi(t):

ẋj = −yj − zj −K(t)[xj(t)− xj(t− τ)] +

+c(t)[x(j+1) mod N (t− τ)− xj(t)]

K̇(t) = γ
1

N

N∑
j=1

(hj(t)− hj(t− τ))[hj(t)−

−2hj(t− τ) + hj(t− 2τ)]

ċ(t) = γc(h1(t)− h2(t− τ))[h1(t)−
−2h2(t− τ) + h1(t− 2τ)], (13)

where ξ(t) is Gaussian white noise with zero mean and
unity variance. The noise intensity is defined by the
parameter D.

The standard way to overcome the effect of noise in
the application of the SG-method is to introduce an
inner deadzone in the adaptation algorithm [Fradkov,
1990; Fradkov, 2007]. This deadzone prevents the di-
vergence of the adaptation algorithms when the exact
values of the state variables are not available. The
SG adaptation algorithm after the introduction of inner



dead zones is given by:

K̇(t) =

{
ũK(t) if |ũK(t)| ≥ ∆K ,

0 otherwise,

ũK(t) = γ
1

N

N∑
j=1

(hj(t)− hj(t− τ))[hj(t)−

−2hj(t− τ) + hj(t− 2τ)]

ċ(t) =

{
ũc(t) if |ũc(t)| ≥ ∆c,

0 otherwise,

ũc(t) = γc(h1(t)− h2(t− τ))[h1(t)−
−2h2(t− τ) + h1(t− 2τ)], (14)

where ∆c and ∆K define the dead zones.
This adaptation algorithm can stabilize at least 5 nodes

coupled in a unidirectional ring for D = 0.1, ∆K =
0.25, ∆c = 0.01: In Fig. 13 the synchronization er-
ror is depicted for t ∈ [0, 750] (top) and for t ∈
[1450, 1500] (bottom). As can be seen in the bottom
panel, the synchronization error for large t is of order
of magnitude 10−3. Figures 14 and 16 depict K̇(t) and
ċ(t), respectively.
Figure 14 depicts K̇(t) for a non-zero dead zone in red

and for a zero dead zone in blue. In the case of a non-
zero dead zone and sufficiently large t, K(t) is equal to
zero, interrupted by a few peaks. This means that the
control is successful and no further adaptation of K is
needed. This can also be seen in Fig. 16 where the cor-
responding time series for K is depicted as a solid blue
line. If no dead zone is introduced, K̇(t) does not van-
ish and is larger than zero. This means that K is con-
stantly driven to large values out of the interval appro-
priate for control and the system quickly diverges. The
same phenomenon can be observed in the adaptation of
c: In Fig. 16 green lines mark the adaptation with and
blue lines without a dead zone, respectively. The time
series of c with a dead zone is shown in Fig. 16 as a
dashed green line.

4 Conclusion
We have presented a method for self-adaptation of

the self-feedback coefficients and coupling coefficients
in the control of delay-coupled networks of chaotic
Rössler oscillators. This method allows us to adap-
tively determine the coefficients such that locally a sta-
bilization of a periodic orbit is achieved, while glob-
ally all nodes synchronize, i.e., after control becomes
effective, the network is in a periodic zero-lag synchro-
nized state. Our algorithm is based on the speed gradi-
ent method.
First, we have shown that for a fixed coupling coeffi-

cient c, an adaptation of the self-feedback coefficients
K1, . . . ,KN can be designed in such a way that the
orbits are stabilized. This stabilization process is com-
patible with the synchronization process. As stabiliza-
tion of the orbits is possible in an interval of values of
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Figure 13. (Color online) Differences ∆x
j = xj+1 − xj ,

j = 1, . . . , 4, ∆5 = x1 − x5 (top) and their final values
(bottom) vs time t for noisy measurement withD = 0.1. Adapta-
tion according to Eq. (14). N = 5, γ = 0.02, γc = 0.0001.
Other parameters as in Fig. 2.
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Figure 14. (Color online) K̇ without dead zone and with dead zone
(∆K = 0.25) vs t for noisy measurement withD = 0.1. Adap-
tation according to Eq. (14). N = 5, γ = 0.02, γc = 0.0001.
Other parameters parameters as in Fig. 2.
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Figure 16. (Color online) Common self-feedback coefficientK(t)
and coupling coefficient c(t) vs t for noisy measurement withD =
0.1. Adaptation according to Eq. (14). N = 5, γ = 0.02,
γc = 0.0001. Other parameters as in Fig. 2.

Ki, and the initial conditions for all nodes in the net-
work are different, the final values of the Ki differ. In
the case that the delay time is not exactly equal to the
period of the orbit, this leads to a non-vanishing syn-
chronization error. In our simulations synchronization
with an accuracy of less than 1% was achieved. The
limitation of a non-vanishing synchronization error can
be overcome if all nodes are controlled by the same
self-feedback coefficient.
Further, we have demonstrated that in addition to the

self-feedback coefficient the coupling coefficient c can
be adapted as well. This enables synchronization of the
network even in the case when an appropriate coupling
strength is unknown.
In experimental and engineering applications the ex-

act state of our systems is often unknown because mea-
surements are affected by noise. To ensure the conver-
gence of our method in the presence of noise we have
introduced dead zones in the adaptation algorithm.
Chaos control and control of synchronization are of

great interest for a variety of systems in physics, bi-
ology, medicine and mechanical engineering. We be-
lieve that our method is a promising extension of the
existing methods for controlling chaos and synchro-
nization in networks. In particular, our method is use-
ful in cases where parameters are unknown or drift as
our method provides tools to find and track appropri-
ate control parameters adaptively. The extension of our
method to noisy measurement ensures the applicability
to real world systems.

Acknowledgements
PG thanks the DAAD program ”Mikhail Lomonosov

(B)”. JL and ES acknowledge support by Deutsche
Forschungsgemeinschaft (DFG) in the framework of
SFB 910. This work was also supported by the
German-Russian Interdisciplinary Science Center (G-
RISC) via the German Academic Exchange Service
(DAAD).

References
Ahlborn, A. and Parlitz, U., Control and synchroniza-

tion of spatiotemporal chaos, Phys. Rev. E 77, 1,
016201 (2008).

Baba, N. , Amann, A. , Scholl, E. and Just, W., Gi-
ant improvement of time-delayed feedback control by
spatio-temporal filtering, Phys. Rev. Lett. 89, 074101
(2002).

Balanov, A. G. , Janson, N. B. and Schöll, E., De-
layed feedback control of chaos: Bifurcation analy-
sis, Phys. Rev. E 71, 016222 (2005).
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