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Abstract
We apply microscopic Brownian motion to macro-

scopic transportation systems by group of robots with
energy dissipation. We extend continuum mechanical
picture of group robots so far developed by the author.
We treat systems where frictional force proportional
to velocity acts on each robot. Taking Hamiltonian
with specified exponential function of time allows us
to deal with motion of robots by canonical equation.
We give methods how to explicitly calculate force be-
tween robots and the object that is to be transported.
For this we set up an ordinary time-differential equa-
tion for temperature parameter. That parameter char-
acterizes distribution function of robots in approximate
equilibrium. We make use of the formula of the force
in simulation studies. We obtain physically adequate
results that the small/large frictional coefficient values
lead to good/bad transportation characteristics. Com-
parison of our results based on continuum picture of
robots with those by Newtonian mechanics for robots
and objects leads to good agreement.

Key words
Group robotics, Liouville equation, energy disspation,

friction proportional to velocity, temperature parame-
ter.

1 Introduction
In cooperatively acting robots, we expect an intelli-

gence that an individual robot will never achieve. We
have various studies[Liu and Wu, 2001; Chen and Li,
2006; Li and Chen, 2006; Badano, 2008] on group
robotics that have been thoroughly investigated[Ota,
2006] in a framework of multi-agent. Agents coop-
eration as a simple interaction based on sensors have
enabled us to enhance the performance[Sugawara and
Sano, 1997]. Sensing limitations have also been explic-
itly examined in robots similar to myopic ants[Gordon,

2010]. Some researchers[Schweitzer, 2003; Hänggi
and Marcheson, 2009] have been inspired by a fact that
a huge number of liquid atoms can move pollen floated
on liquid, that have contributed to develop a new mo-
tor device in nano region. According to Brownian mo-
tion, it worked under temperature gradients. We can
also notice that we do not need to equip the atoms with
any sensing devices. To apply the idea of “Brownian
motors” to macroscopic systems of robots, we have
proposed[Itami, 2012; Itami, 2011] a transportation
system of objects by group of robots. Robots corre-
sponded to liquid atoms while objects that were trans-
ported by robots to floating pollen. By a word “macro-
scopic” we meant constituents of systems moved ac-
cording to classical mechanics. We assumed 102 ∼
104 constituent robots with extent nm ∼ m. Under ex-
ternal potential field, our robots moved aimlessly and
only collided with each other. They had a chance to
collide with an object. Repetitive collision of robots
with the object indirectly carried the object. As ap-
plications, we thought transporting garbage of various
physical properties and removing obstacles at disaster
spots. We also thought that when these robots in cylin-
ders were controlled to efficiently push pistons, thermal
cycles were designed to achieve high performance. It
was obvious that calculating Newton equations of each
robot becomes difficult when a number N of robots
increases. However, in designing systems of group
robots, we needed mathematical model that appropri-
ately describes trends of the systems in time. It was bet-
ter to calculate an average of dynamical state of robots
than to directly follow locations and momenta of each
robot and of the object in time. Based on the idea, a
main dynamical variable in our formulation was a num-
ber density of the robots. A framework of Hamiltonian
dynamics of robots enabled us to take such a number
density. Liouville equation has been derived by canon-
ical equations of motion for Hamiltonian systems. For
macroscopic systems, we have to take a friction into
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account. When frictional force is present, energy of
systems dissipates. In this article, we take systems
with frictional force that is proportional to velocity. To
the systems with energy dissipation, we apply a well-
known extension[Kimura and Sugano, 1999] of canon-
ical formalism. Distribution function represents con-
tinuum mechanical picture also for group robots under
friction. The function turns out to take a specific form
with temperature parameters in its equilibrium state.
We set an ordinary differential equation for the tem-
perature parameter by statistically averaging amount of
potential energy of group robots.
First in Section 2 we explain results obtained in pre-

ceding articles[Itami, 2012; Itami, 2011]. For systems
with energy dissipation, we introduce Hamiltonian in
Section 3. We assume friction proportional to veloc-
ity. We calculate an equilibrium distribution fv(v, x; t).
The distribution gives number density of robots. The
distribution function depends on “temperature” param-
eter β̃(t). Section 4 gives an ordinary time differential
equation that determines time trends of the parameter
β̃(t). We obtain expression of force acted on the ob-
ject. For three combinations of values for proportional-
ity constant of friction to velocity of both robots and the
object, we show numerical simulation in Section 5. Our
results are physically acceptable as we have good/bad
transportation characteristics under small/large friction
force. Dependence of the features on strength of col-
lision among robots and that on number of robots are
also examined. Summary and discussion are given in
Section 6.This article shows contents those presented
in conferences[Itami1, 2012; Itami2, 2012] with slight
modifications.

2 Continuum Picture of Group Robots [Itami,
2012; Itami, 2011]

We have analyzed systems of group robots and objects
in 2 dimensional plane region. Each robot with mass m
was taken as point-like where its size was considered
as its radius parameter aR. For an object, an assumed
form of a disc with its radius RB and mass M was ap-
plied in a collision process. We assumed that a system
of robots was described as a Hamiltonian dynamical
system. Under the assumption, a continuum mechan-
ical picture of a group of robots was developed. In
Hamiltonian formulation, each robot with momentum
p moving under potential energy V (x; t) was assumed
to have its free Hamiltonian

H
′

0(p, x; t) =
p2

2m
+ V (x; t) (1)

Potential energy V (x; t) was a sum of V0(x; t), control
energy Vcnt(x; t) of robots and reaction of surround-
ing walls, and VB(|x−X(t)|), collision between each
robot at x and the object at X(t).

V (x; t) = V0(x; t) + VB(|x−X(t)|) (2)

An operation to control a movement of a group of
robots was expressed as a potential V0(x; t) dependent
on a location x of a robot. In our system, manipulating
V0(x; t) indirectly transported the object by collision
of robots on the object. Among any two robots, one
centered at x and another at x

′
, we assumed collision

energy

Vcol(|x− x
′
|) (3)

As a number density of robots with momentum p cen-
tered at x, we were able to define one-body distribu-
tion function f1(p, x; t). We introduce a correlation
between robots, one with p, x and another one with p

′
,

x
′
, in another number density, two-body distribution

function f2(p, x, p
′
, x

′
; t). These distribution functions

satisfied a following equation

∂f1
∂t

+ [f1,H
′

0] = −(N0 − 1)×
∫

d2x
′
d2p

′
[f2, Vcol]

(4)

We do not show in (4) arguments p, x and t of the func-
tions on the left hand side and additionally p

′
, x

′
of f2

and Vcol on the right hand side are not shown. We as-
sumed that the distribution functions varied slowly in
time. Under the assumption the following one-body
distribution function

feq
1 (p, x) = C · e−βH

′
0(p,x;t) (5)

satisfied (4) in the absence of collision among robots,
Vcol = 0. Two constants C and β were calculated by
the two conditions of total energy ER and number N0

of robots in the system.
Specific formulae of V0(x; t), VB(R) and Vcol(r)

were given as shown below. External potential V0 for
robots was given by Vcnt(x; t) added by repulsive force
by walls. Under definitions x±i ≡ xi ± Si, the explicit
form was

V0(x; t) = Vcnt(x; t)

+cR

2∑
i=1

(
x+i

−ncR + x−i
−ncR

)
(6)

For collision VB between robots and the object and
Vcol among robots, following soft core potentials were
adopted.

VB(R) = σs

(
RB

R

)ns

(7)

Vcol(r) = σv

(
aR
r

)nv

(8)
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Figure 1. Collision of robots with a line element RBdθ on the
object B centered at C(X). The angles Φ̃ and Φ̃0 denote the
direction of V clockwise measured from θx1 and X1, respectively.
Calculation of (12) needs these parameters Φ̃ and Φ̃0.

We calculated force of robots under equilibrium dis-
tribution. The force acted on an object according to a
configuration shown in Fig.1. We parametrized relative
velocity of collision vr by its absolute value vr and an
angle ϕ. We measured the angle ϕ from the vector θx1

in Fig.1. This vector indicated a direction from the cen-
ter of the object to a collision point. Let e be coefficient
of restitution. An increment dV

′
of the object velocity

by collision with robots was given by

dV
′
=

(1 + e)vr cosϕ

1 + M
m

(9)

The increment dV
′

was in the direction of θx1 . Since
we saw π

2 < ϕ < 3π
2 in Fig.1, dV

′
< 0. In the unit

area there were

d2N = N0f1(p, x; t)d
2vr (10)

robots. Relative velocity of these robots was vr ∼ vr+
dvr. During time interval dt, with line element RBdθ
of the object only robots in the area

dS = RBdθ(−vr cosϕ)dt (11)

collided. Each robot in the number d2N × dS gave
impulse MdV

′
to the object. When we integrated the

impulse, net force acting on the object by robots was
given as

F (X; t) =
1

dt

∫ 2π

θ=0

∫ ∞

vr=0

∫ 3π
2

ϕ=π
2

MdV
′
d2NdS

(12)

Reaction of the walls to the objects was expressed by
an external potential

VB0(X) = cB

2∑
i=1

(
X+i

−ncB +X−i
−ncB

)
(13)

where X±i ≡ Xi±(Si−RB). Even when we took no
interaction between robots group robots approximately
reached its equilibrium only by energy exchange be-
tween each robot and the object.

3 Liouville Equation Under Friction
When frictional force proportional to velocity, −γẋ,

is present in equation of motion

mẍ = −∂V (x; t)

∂x
− γẋ (14)

a Lagrangian is set as

L(x, ẋ; t) = e
γ
m t

(
m

2
ẋ2 − V (x; t)

)
(15)

Euler-Lagrange equation of motion d
dt

∂L
∂ẋ = ∂L

∂x gives
(14). Usual canonical method allows us to calculate
canonical momentum

p =
∂L(x, ẋ; t)

∂ẋ

= e
γ
m tmẋ (16)

and Hamiltonian H(p, x; t) = p · ẋ − L. Exis-
tence of Hamiltonian makes us possible to take num-
ber density of robots as dynamical variable. We
have in (16) special dependence e

γt
m on time and

the potential energy V (x; t) has explicit time depen-
dence. However, infinitesimal phase volume dΓ ≡
d2p1 · · · d2pN0d

2x1 · · · d2xN0 is easily shown to be in-
variant in time.

dΓ(t) = dΓ(0) (17)

This fact is proved in straightforward calculations. Ac-
cording to Hamiltonian equations, a Jacobian J(t)
given by

dΓ(t) = J(t)dΓ(0) (18)

is 1 even when the Hamiltonian explicitly depends on
time. We understand the fact (17) also in an intu-
itive argument. Let N0 = 1 only for simplicity. Un-
der slowly varying potential V (x; t), (14) shows that
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a robot or particle with coordinate x moves to a point
of extremum of V . The particle gradually lessens its
velocity ẋ. The velocity v ≡ ẋ damps in a manner as
v ∼ e−

γ
m t, since mv̇ ∼ −γv is seen by (14). An in-

finitesimal volume in a space by v and x damps expo-
nentially to zero accordingly. On the other hand, (16)
tells that in

d2pd2x = e2
γ
m tm2d2vd2x (19)

we have the exponential function e2
γ
m t. This e2

γ
m t and

the factor e−2 γ
m t in d2v ∼ e−2 γ

m t cancel each other out
and the infinitesimal volume (19) conserves in time.
Let

fp(p, x; t) (20)

be a one-body distribution function of robots in phase
space: we have a number of fp(p, x; t)d2pd2x robots
with momentum around p ∼ p + d2p cenetered at
around x ∼ x + d2x. According to conservation of
phase volume, this one-body distribution function sat-
isfies the following equation similar to (4)

∂fp(p, x; t)

∂t
+ [fp(p, x; t),H(p, x; t)]

=

∫
d2p

′
∫

d2x
′
F(p

′
, x

′
; p, x; t) (21)

The right hand side of (21) is an integration of collid-
ing energy of robots with layout (p

′
, x

′
) with robots

with layout (p, x) in the left hand side over layout
(p

′
, x

′
). The right hand side of (21) is often approx-

imated[Prigogine, 1984] as difference fp(p, x; t) itself
from equilibrium distribution. This approximation al-
lows our distribution to approach to its equilibrium one.
If we set

fp(p, x; t) = Cp(t)e
−β(t)H(p,x;t) (22)

the 2-nd term on the left hand side of (21) reduces
to Poisson bracket among Hamiltonian themselves;
hence, it becomes to zero. When we consider (22)
as equilibrium distribution, the right hand side of (21)
is zero. Moreover, if variations of V (x; t) and e±

γ
m t

is slow enough compared to the motion of group of
robots, we also can set the 1-st term on the left hand
side of (21) to be zero. This means that (22) satisfies
(21). An equilibrium distribution fp given by (22) is
applied to calculating collision force between robots
and object. Now let us note that momentum p is an
auxiliary variable. Actual physical quantity is velocity
v. It is convenient to transform fp into a function fv of
velocity. Let us define the following quantities.

β̃(t) ≡ β(t)e
γ
m t (23)

H̃(v, x; t) ≡ m

2
v2 + V (x; t) (24)

Cv(t) ≡ m2e2
γ
m tCp(t) (25)

Under these (23), (24) and (25), distribution function is
given by

fv(v, x; t) = Cv(t)e
−β̃(t)H̃(v,x;t) (26)

A condition that we have N0 robots in the system gives

N0 =

∫
d2v

∫
d2xfv(v, x; t) (27)

4 Time Differential Equation for β̃(t)
We present here a time differential equation for a

quantity β̃(t). Energy of robots ERob(t), that of the
object EObj(t) and interaction energy Eint(t) among
them are given as

ERob(t) =

N0∑
i=1

(m
2
v2i + V0(xi; t)

)
(28)

EObj(t) =
M

2
V 2 + VB0(X) (29)

Eint(t) =

N0∑
i=1

VB(|xi −X(t)|) (30)

Total energy is a sum of these (28), (29) and (30). The
following equations of motion of robots and the object

mv̇i = −∇iV0 −∇iVB − γvi (31)

MV̇ = −∇VB0 −∇X

N0∑
i=1

VB − δV (32)

allow us to calculate time differentiation of (28), (29)
and (30). The results are added together to lead to

dEtot(t)

dt
= −γ

N0∑
i=1

v2i − δV 2 +
∂

∂t

N0∑
i=1

V0(xi; t)

(33)
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In the following we replace quantities that relate to
robots with statistical averages calculated by the dis-
tribution function fv(v, x; t), (26). To calculate time
differentials of statistical quantities, we use a time dif-
ferential of β̃(t). Equation (33) allows us to obtain
a time differential equation for temperature paramter.
Statistical average of kinetic energy is given by

m

2
v2 =

∫
d2v

∫
d2xm

2 v
2fv(v, x; t)

N0
≡ K (34)

A definition

Iv[β̃(t)] ≡
∫

d2ve−β̃(t)m
2 v2

=
2π

mβ̃(t)
(35)

allows us to express the quantity (34) in a simple form

K = −∂Iv[β̃(t)]

∂β̃(t)
· Iv[β̃(t)]

−1

=
1

β̃(t)
(36)

Equation (36) gives a meaning that average of kinetic
energy of robots reduces to an inverse of the quantity
β̃(t). Kinetic theory of gas has an interpretation that
average value of kinetic energy = kBT (kB :Boltzmann
constant). According to the explanation, we call β̃(t)
an inverse of temperature or simply temperature param-
eter. Use of (36) allows us to represent a sum of (33),
(28) and (30) as statistical average as

1

N0

dEtot(t)

dt
= −2γ

m
K − δV 2

N0
+

∂V0(x; t)

∂t

= −2γ

m

1

β̃(t)
− δV 2

N0
+

∂V0(x; t)

∂t

(37)

In the same manner we have

N0V (x; t) =

∫
d2v

∫
d2xV (x; t)fv(v, x; t) (38)

Under a definition

Ix[β̃(t); t] ≡
∫

d2xe−β̃(t)V (x;t) (39)

(27) gives

V (x; t) = −∂Ix[β̃(t); t]

∂β̃(t)
· Ix[β̃(t); t]

−1
(40)

We represent statistical average of a sum of (28) and
(30) as

ERob + Eint

N0
= K + V (x; t)

= 1
β̃(t)

+

(
−∂Ix[β̃(t); t]

∂β̃(t)

)
· Ix[β̃(t); t]−1

≡ f(β̃(t); t) (41)

Time differentiation of (41) added by EObj ·N0
−1 leads

to a time differential of total energy per robot. (37)
allows us to obtain

−2γ

m

1

β̃(t)
− δV 2

N0
+

∂V0(x; t)

∂t

=
d

dt
f(β̃(t); t) +

1

N0

dEObj(t)

dt
(42)

From (42) we obtain an ordinary differential equation
for β̃(t) in time

˙̃
β(t) =

(
−2γ

m

1

β̃
− δV 2

N0
+

∂V0(x; t)

∂t

− 1

N0

dEObj

dt
− ∂f

∂t

)(∂f
∂β̃

)−1

(43)

The 3-rd and the 4-th terms of the numerator on the
right hand side is explicitly calculated by time differ-
ence. As ERob + Eint equals to Etot − EObj , setting
t = 0 in (41) gives initial value β̃(0) as

Etot(0)− EObj(0)

N0
= f(β̃(0); 0) (44)

We calculate total energy Etot(0) on the left hand side
and energy of the object EObj(0) when we know initial
layout and initial velocity of robots and object. Let us
note that left hand side of (44) depends on number of
robots N0. At each stage of calculation, Cv(t) is given
by the condition (27) using β̃(t) at that stage of time.

5 Simulation
In our formula (12) for net force, d2N contains dis-

tribution function f1(p, x; t) as seen in (10). We re-
place this function f1 by fv(v, x; t) calculated by (26)
when friction force is present. The temperature param-
eter β̃(t) in fv is to be calculated along with motion of
the object. In this section, numerical simulation is done
by the formula (12). We expand the formula in a Tay-
lor series in |V |. The 0-th approximation is quite easily
calculated only by substitution, C → Cv and β → β̃,
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in (32)[Itami, 2011] 1 as

F (X; t)|V=0 = −M
1 + e

1 + M
m

RBN0Cv(
v2

2
)2

·RB · π2 · cV B · ∂e
−β̃V0(X;t)

∂X

= +
(1 + e)M

1 + M
m

R2
Bπ

2N0Cv
1

β̃m2
cV B

·e−β̃V0(X;t) ∂V0(X; t)

∂X
(45)

where cV B ≡ e−β̃VB(|x−X|) and we do not show de-
pendence of F , Cv, β̃ and cV B on time. The nega-
tive gradient of Vcnt forces the robots to move towards
the area where we have small potential values. The
robots collide more frequently than those in the area
with large potential values. This resulted in the posi-
tive sign in (45) for the force on the object. In actual
calculation, we also applied formulae with higher de-
grees |V |1, |V |2 · · · . To clarify the point discussed
above, we set a linear function as a specific form for a
potential

Vcnt(x) = α1x1 + α2x2 (46)

Parameters in MKS units are:

1. walls are modeled as [−S1, S1] × [−S2, S2] =
[−1, 1]× [−1, 1],

2. a number of robots is N0 = 200,
3. mass and radius of robots are set as m = 0.01 and

aR = 0.01, respectively,
4. for the object we set its radius RB = 0.1 and mass

M = 0.5, respectively,
5. as coefficient of restitution in (9) and (45), we set

e = 1
6. for interaction potentials given by (6), (7), (8) and

(13), we set cR = 3 × 10−5, ncR = 4, cB =
3 × 10−7, ncB = 4, σv = 0(no collision between
robots), σs = 10 and ns = 4,

7. in (46) we set as α1 = α2 = 0.1 to make robots
move from upper right →lower left .

Calculations with various values of σv = 1, 10, and
100, and N0 = 50 and 100 are also tried as shown in
Fig.4 and Fig.5, respectively. In the parameters, radii
are set as RB = S1

20 , i = 1, 2 and aR = RB

10 . For
mass, we set m = M

50 . We take computational burden
in direct simulation into account when setting parame-
ters for interaction potentials and α1, α2. In an initial
state at t = 0.0, the object is set at the origin, while
robots are randomly laid out. Both are put at rest. En-
ergy conditions are calculated as Etot(0) = 1443 and
Eobj(0) = 0 in (44) to give the initial value of β̃(0).

1Coefficient of restitution e, that is tacitly taken e = 1 in [Itami,
2011], is explicitly shown in (45).

In the calculation we take up to n = 3 degree in the
Taylor expansion of (12).
To finite difference of space and time, we apply

space: a numerical integration of (39) with 20 di-
vision,
time: a forward difference with dt = 5× 10−6.

As friction acts on robots proportional to velocity, we
take two values of proportionality constant γ = 0.1
and 0.2. Also for frictional force of object, we apply
δ = 0.2 and 0.5. We give results of simulation in
Fig.2. As we set α1 = α2 in (46), X1(t) = X2(t)
and V1(t) = V2(t) by symmetry between directions in
x1 and x2. Trends in the figure show that small/large

Figure 2. For three combinations of proportionality constantsγ and
δ, we show in a) trends of the coordinate X1(t) and in b) the ve-
locity V1(t) of the object. Among these three trends, we compare
transportation capabilities in c) as values of mean velocity V1(t).

friction force corresponds good/bad characteristics of
transporting object. We calculate each value of mean
velocity in Fig.2c) simply as

V1(t) ≡
1

T

∫ T

0

dtV1(t) (47)

In (47) T is a time when X1(t) takes a maximum value:
T = 1.12 for a combination (γ = 0.1, δ = 0.5), 0.84
for (0.1, 0.2) and 0.94 for (0.2, 0.2). For a fixed γ =
0.1, we have better(faster) V1(t) = 1.03 for δ = 0.2
than 0.76 for δ = 0.5. Meanwhile, the result V1(t) =
1.03 for γ = 0.1 is better than 0.92 for γ = 0.2, when
we set δ = 0.2.
We compare the results with those by Newtonian me-

chanics for robots and objects. In direct calculation,
integration method developed by Verlet[Gould and To-
bochnik, 1996]

v(t+
dt

2
) = v(t) +

dt

2m
F (t) (48)
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x(t+ dt) = x(t) + dt · v(t+ dt

2
) (49)

v(t+ dt) = v(t+
dt

2
) +

dt

2m
F (t+ dt) (50)

is applied. We set time difference ∼ 0.01 × RB

√
m
σs

.

This is required for conservation of total energy when
our system would have no friction. Results, as shown
in Fig.3a), present that transporting velocity is approxi-

Figure 3. In a), for γ = 0.1 and δ = 0.5, we compare the
time trend X1(t)(= X2(t))(solid line) calculated by contin-
uum mechanical method with the trends X1(t)(dashed line) and
X2(t)(dotted line) by direct Newtonian mechanics. The solid line
in this figure a) represents the same time trend of the solid line in
Fig.2a). Calculation by Newtonian mechanics is represented in a
X1 − X2 form by a solid line in b). Typical paths of robots are
also shown in b) by a dashed, dotted and dash-dotted line.

mately calculated by continuum mechanics. Prediction
of dead times must appropriately be done in our fu-
ture studies. In Fig.3b), we show both a path of the
object and paths of robots. Three robots that we arbi-
trarily choose are forced by a potential (46) gradually
from upper right(IR) to lower left(FR). On the trips,
one(dashed line) of them is recoiled by the object near
the origin O. After that he obeys the potential force to
go to his final position FR, to where other two robots
also move. As we assume no collision among robots,
all robots can arrive at the same point. The object that
starts at O is transported by collision with robots to W
near the wall. In the time duration t ∈ [0, 4] the object
finally arrives at A. We compare trends with various
values of σv , strength of collision between robots (8),
in Fig.4 with continuum mechanical calculations.
We see no monotonic relation that larger/smaller σv

corresponds to shorter/longer dead time at least in this
figure. Regarding the number of robots N0, simply the
more robots we prepare, the faster transportation speed
as shown in Fig.5 is obtained. Friction coefficients take
γ = 0.1 and δ = 0.5 in Figs.4 and 5. In trends of
the object simulated by Newton mechanics, we have

Figure 4. Newton mechanical calculations of coordinate X1(t)
and X2(t) are compared with continuum mechanical simulation re-
sults (thick solid lines) in a) and b), respectively. In both figures, σv

in (8) takes 0(no collision) for solid lines, 1 for dashed lines, 10 for
dotted lines and 100 for dash-dotted lines. Thick solid lines in a)
and b) are the same as the solid line in Fig.3a).

Figure 5. Solid lines in a)(N0 = 200), b)(N0 = 100) and
c)(N0 = 50) represent time trends of the object calculated by
continuum mechanics. Simulation results by Newton mechanics are
shown in each graph as dashed lines for X1(t) and dotted lines for
X2(t). Solid line in a) is the same as the solid line in Fig.3a).

those that take large deviation from the continuum me-
chanical prediction. Number of robots is not sufficient
to completely describe the systems only in statistical
methods. We must examine dependence of trends of
the object on initial layout of robots. Such additional
information can help our method. We have methods
of molecular dynamics[Fincham, 1980]. When calcu-
lational space is uniform, we can set periodic boundary
conditions. The periodicity reduces calculation volume
to a great extent. Accordingly, simulation with ∼ 102

molecules can give behavior of actual matter that con-
tains ∼ 1023 order of molecules. In our transportation
systems, however, robots are subject to external field
(,including reaction force by objects) that breaks the
uniformity. If molecular dynamical methods could be
developed for systems under external field, our direct
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simulation by Newtonian mechanics would be enor-
mously facilitated.

6 Summary and Discussion
In analyzing group of robots that transports object in

continuum mechanical way, we studied more realistic
condition. In this article, energies of robots and ob-
jects dissipate by friction. As we restricted ourselves
to friction proportional to velocity, we treated energy
disspation by Hamiltonian. This Hamiltonian allowed
us to build equilibrium distribution of robots number
as a function defined over velocity-coordinate space in
the absence of collision among robots. The equilib-
rium distribution function was expressed by tempera-
ture paramter. This parameter gives average value of
kinetic energy of robots. We gave a time differen-
tial equation that determines the temperature parame-
ter. We calculated net force on the object under the
equilibrium distribution. We analyzed motion of the
object also under frictional force proportional to its ve-
locity. Results allow physically acceptable explanation.
We have the good/bad performance of transportation
under the small/large frictional force. Good agreement
with calculation by Newtonian mechanics was also ob-
tained under appropriate initial layout of robots. By the
method developed in this paper, we can design trans-
portation system by group robots in a more realistic
manner. We must examine our scheme of transporta-
tion by group of robots, especially without sensors for
mutual information, in experiments.
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