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Abstract
A satellite moving in the gravitational and magnetic

fields of Earth is considered. The possibility of design-
ing an integrated attitude control system that combined
magnetic and Lorentz control systems is being studied.
The expediency of such an association is shown. The
effectiveness of the constructed electrodynamic attitude
control system for stabilization of different programmed
motions of the satellite is confirmed. An algorithm for
constructing control torques is shown for each of the
considered problems. The results of the computer sim-
ulation are presented. The three-axial stabilization of a
satellite in the orbital frame requires restoring and dissi-
pative components of control torques. In general case
for monoaxial stabilization of a satellite in the orbital
frame the control parameters can be constructed as a sum
of restoring, dissipative, and compensating components.
Stabilization in two-axis programmed rotation requires
one to compensate for the specified gyroscopic torque,
and an additional term can be introduced into one of the
control vectors. For the problem of three-axial stabiliza-
tion in the Koenig frame, the gravity gradient torque can
be compensated by means of the Lorentz torque. Finally,
the three-axial stabilization of a satellite in the magneto-
Lorentz frame also involves the creation of a compensat-
ing torque.
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1 Introduction
A lot of forces and torques act on a satellite in

near-Earth space [Beletsky, 1966; Ivanov et al., 2020].
Among them are the forces and torques caused by the
influence of the gravitational and magnetic fields of the
Earth [Lovera and Astolfi, 2006; Zhou et al., 2017;
Ovchinnikov and Roldugin, 2019], rarefied near-Earth
plasma [Sarychev et al., 2007; Barinova et al., 2023;
Somov et al., 2024], and the light pressure of the Sun
[Mashtakov et al., 2018; Somov et al., 2022b]. The prac-
tice of creating and developing systems for satellite atti-
tude stabilization indicates that despite attempts to use a
wide variety of forces and torques arising in near-Earth
space, systems based on the use of gravitational and
magnetic fields of the Earth remain the most common.
Interesting options for creating integrated satellite atti-
tude control systems using force factors of different na-
ture have been known almost since the very beginning of
the space age. First of all, these are systems that use both
the gravitational and magnetic fields of the Earth. As is
known, the gravity gradient torque provides the possibil-
ity of passive orientation of the satellite in the orbital co-
ordinate system [Beletsky, 1966]. However, the gravity
gradient torque alone is not enough to stabilize the satel-
lite in the orbital coordinate system. A libration damp-
ing system, passive or active, is also required [L. Gaul
and Sachau, 1998]. In many cases, damping systems
rely on the capabilities provided by the Earth’s magnetic
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field and are implemented on the basis of spherical liq-
uid dampers, hysteresis rods, and dampers based on Fou-
cault currents.

In addition, the Earth’s magnetic field provides an op-
portunity to implement an active magnetic attitude con-
trol system using the interaction of the Earth’s magnetic
field (with magnetic induction B⃗) with a controlled in-
trinsic magnetic moment I⃗ [Arslanova et al., 2023] of
the satellite by means of the magnetic torque M⃗M (Fig.
1).

Figure 1. M⃗M torque

Active magnetic attitude control systems are capable
of solving various and quite complex problems [Ovchin-
nikov and Roldugin, 2021; Roldugin, 2023]. These sys-
tems have the following advantages: high reliability, low
power consumption, small size and mass. The disadvan-
tage of active magnetic attitude control system include
the limitation on the magnitude of the control torque,
which does not allow quick satellite reorientation. More-
over, active magnetic attitude control system cannot cre-
ate a control torque along the vector B⃗.

Another possibility for creating a control torque us-
ing the Earth’s magnetic field is related to the presence
of a charge Q on the satellite. Such a charge can be
caused not only by precipitation from the rarefied near-
Earth plasma but also by an artificial charging process,
for example, in order to provide active anti-radiation
protection. As shown in articles [Tikhonov and Tkhai,
2016], the charge can significantly affect the dynamics
of the rotational motion of the satellite, especially if the
satellite center of mass (point C) does not coincide with
the satellite center of charge (point O). And the pres-
ence of a charge controlled by magnitudeQ and position
ρ⃗0 =

−−→
CO can be the basis for creating a Lorentz atti-

tude control system, also called a magneto-Coulombic
attitude control system [Giri and Sinha, 2014; Giri and
Sinha, 2017; Aleksandrov and Tikhonov, 2020; Prabhat
et al., 2022]. The Lorentz torque can also be realized in
a different way when an electrically neutral satellite as

a whole carries opposite charges separated in opposite
directions (Fig. 2).

This paper focuses on the analysis of an integrated
satellite attitude control system based on magnetic and
Lorentz systems. It is shown that such an approach to the
design of an attitude control system solves the underac-
tuation problem in magnetic and Lorentz attitude control
systems. Thus, in [Antipov and Tikhonov, 2007], the
concept of an electrodynamic control system was pro-
posed, which quickly became popular. In subsequent
years, using an electrodynamic control system, a num-
ber of relevant applied problems related to the satellite
attitude control were solved. These studies are reflected
in the papers [Aleksandrov and Tikhonov, 2012; Alek-
sandrov and Tikhonov, 2013; Aleksandrov et al., 2016;
Klyushin et al., 2024] and cited therein.

Figure 2. M⃗L torque

However, the mentioned papers did not consider the
problem of how much control efficiency increases if an
electrodynamic control system is used instead of a mag-
netic or Lorentz control system taken separately. The
range of problems, the solution of which is possible only
on the basis of an integrated electrodynamic control sys-
tem, has also not been studied. This work is aimed at
filling these shortcomings.

2 Programmed attitude motion and control design
In accordance with general idea of electrodynamic atti-

tude control system [Antipov and Tikhonov, 2007], there
are two control torques originated from the geomagnetic
field with magnetic induction B⃗: the Lorentz torque M⃗L

and the magnetic torque M⃗M which have, respectively,
the following forms

M⃗L = P⃗ × T⃗ , M⃗M = I⃗ × B⃗. (1)

Here, P⃗ = Qρ⃗0, T⃗ = v⃗C × B⃗, and v⃗C is velocity of
the satellite mass center with respect to the Greenwich
reference frame [Somov et al., 2023].
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The torques (1) can be used to solve various problems
of satellite attitude control. In this connection, the con-
trol torques (1) are constructed in different ways depend-
ing on the specific programmed motions discussed in this
section.

2.1 Threeaxial stabilization of a satellite in the or-
bital frame

Consider a satellite whose center of mass moves in the
Newtonian central Earth’s gravitational field along Kep-
lerian circular orbit of radius R. We study satellite at-
titude motion with respect to the orbital frame Cξηζ,
which is often chosen as the base frame due to conve-
nience in solving a number of practically important prob-
lems [Somov et al., 2022a]. The axis Cξ(ξ⃗0) is directed
along the tangent to the orbit towards the motion, the axis
Cη(η⃗0) is directed along the normal line toward the orbit
plane, the axis Cζ(ζ⃗0) is directed along the local verti-
cal. Orientation of principal central axes of inertia Cxyz
of the satellite with respect to axes Cξηζ is defined by
matrix A of direction cosines αi, βi, γi (i = 1, 2, 3) so
that the equalities

ξ⃗0 =α1⃗i+ α2j⃗ + α3k⃗,

η⃗0 =β1⃗i+ β2j⃗ + β3k⃗,

ζ⃗0 =γ1⃗i+ γ2j⃗ + γ3k⃗

are valid. The programmed satellite orientation in the or-
bital frame is defined by matrix A0 of direction cosines.
Let ω⃗′ = p i⃗ + q j⃗ + r k⃗ be satellite angular velocity
with respect to the orbital frame, the satellite position
for which

A = A0, ω⃗′ = 0⃗ (2)

is considered as the programmed satellite attitude mo-
tion. The control torques (1) which ensure the motion
(2) are constructed in [Antipov and Tikhonov, 2007] by
means of controlled parameters

P⃗ = P⃗rest + P⃗diss, I⃗ = I⃗rest + I⃗diss, (3)

where P⃗rest = QkLT⃗0 and I⃗rest = kM B⃗0 support gen-
eration of restoring components of the torques M⃗L and
M⃗M respectively, whereas P⃗diss = QhL ω⃗

′ × T⃗ and
I⃗diss = hM ω⃗′ × B⃗ support generation of dissipative
components, providing active damping [Shelenok, 2024]
using the same torques. Thus, the control torques (1)
take on the form

M⃗L = QkLT⃗0 × T⃗ +QhL(ω⃗
′ × T⃗ )× T⃗ ,

M⃗M = kM B⃗0 × B⃗ + hM (ω⃗′ × B⃗)× B⃗.

The coefficients kL, kM , hL, hM may be scalar func-
tions of time, for example as follows:

kL =
kL0

Q∥T⃗ (t)∥2
, kM =

kM0

∥B⃗(t)∥2
,

hL =
hL0

Q∥T⃗ (t)∥2
, hM =

hM0

∥B⃗(t)∥2
.

Here, kL0, kM0, hL0, hM0 are positive constants that
can be chosen. Consider a typical satellite that moves in
orbit with radius R = 7 · 106 m and inclination i = 60o.
Gravitational and electrostatic properties of the satel-
lite are described by the values of principal central mo-
ments of inertia A = 1000 kg·m2, B = 600 kg·m2,
C = 1400 kg·m2 and the charge Q = 5 · 10−3 C.
The control torque M⃗L is characterized by coefficients
kL0 = 2.5 · 10−3, hL0 = 0.2, and the control torque
M⃗M is characterized by coefficients kM0 = 2 · 10−3,
hM0 = 1.0.

The results of computer modeling (Figs. 3, 4, 5) make
it evident that in the case where Lorentz and magnetic
attitude control systems alone cannot solve the prob-
lem, the integrated electrodynamic attitude control sys-
tem solves the problem successfully. The “airborne” an-
gles φ, θ, ψ (roll, pitch, and yaw) are equal to zero in
the programmed satellite attitude motion with A0 =
diag(1, 1, 1). The dimensionless variable u = ω0t is an
argument of latitude of the satellite.

Figure 3. ML only operating

2.2 Monoaxial stabilization of a satellite in the or-
bital frame

Let σ⃗0 be the ort of some axis fixed in the orbital frame.
In projections on the xyz axes, this ort, hereinafter re-
ferred to as s⃗0, has the form

A⊤σ⃗0 = s⃗0 = c1s⃗1 + c2s⃗2 + c3s⃗3,

where c1 = const, c2 = const, c3 = const. It is un-
changed in the orbital frame. Let r⃗0 be some ort

r⃗0 = x0⃗i+ y0j⃗ + z0k⃗,
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Figure 4. MM only operating

Figure 5. BothML andMM

where x0 = const, y0 = const, z0 = const, which is
unchanged in the coordinate system Cxyz rigidly con-
nected to the satellite. The problem is to construct con-
trol torques (1) that ensure the existence and asymptotic
stability of such a position of the satellite in the orbital
frame in which

r⃗0 = s⃗0, ω⃗′ = 0. (4)

On the basis of dynamic Euler equations, it can be shown
[Aleksandrov and Tikhonov, 2013] that controlled pa-
rameters taken in the form (3) can not solve the problem
since the gravity gradient torque and inertial term result
in the torque

g⃗ = 3ω2
0 s⃗3 × (Js⃗3)− ω2

0 s⃗2 × (Js⃗2) (5)

that destroys any non-straight relative equilibrium posi-
tion of the satellite in the orbital frame. In order to com-
pensate for the torque (5), the controlled parameters can
be constructed in the form

P⃗ = P⃗comp+ P⃗rest+ P⃗diss, I⃗ = I⃗comp+ I⃗rest+ I⃗diss,

where

P⃗comp = g1
(B⃗ × T⃗ )

|B⃗||T⃗ |2
, I⃗comp = g3

T⃗

|B⃗||T⃗ |
−g2

(B⃗ × T⃗ )

|B⃗|2|T⃗ |
,

and g1, g2 and g3 are the projections of the torque g⃗ on
the axes with orts

b⃗ =
B⃗

|B⃗|
, t⃗ =

T⃗

|T⃗ |
, w⃗ =

B⃗ × T⃗

|B⃗||T⃗ |
.

The same procedure can be applied for the construction
of the restoring component M⃗rest of the control torque.
Let M⃗rest have the form M⃗rest = k0r⃗0 × s⃗0, then it can
be found as the sum

k0r⃗0 × s⃗0 = P⃗rest × T⃗ + I⃗rest × B⃗,

where [Aleksandrov and Tikhonov, 2013]

Prest1 = Prest2 = 0, Prest3 = −k0⃗b(r⃗0 × s⃗0)/|T⃗ |,

Irest1 = 0, Irest2 = −k0w⃗(r⃗0 × s⃗0)/|B⃗|,

Irest3 = k0t⃗(r⃗0 × s⃗0)/|B⃗|.

The dissipative components of control torques can be
created as suggested in [Antipov and Tikhonov, 2007]
by choosing the following components of controlled pa-
rameters: P⃗diss = hΛω⃗

′ × T⃗ , I⃗diss = hM ω⃗
′ × B⃗.

As a result, the control torques are as follows:

M⃗L = (P⃗rest + P⃗diss + P⃗comp)× T⃗ ,

M⃗M = (I⃗rest + I⃗diss + I⃗comp)× B⃗.
(6)

Therefore, in the problem under consideration, the pro-
grammed motion (4) can be implemented only with the
simultaneous action of both restoring torques. As for
dissipative torques, they can be used independently or
together at the same time. For computer modeling con-
sider a satellite with principal central moments of iner-
tia A = 1000 kg·m2, B = 700 kg·m2, C = 800 kg·m2

which moves in a circular equatorial orbit with radius
R = 7 · 106 m. The other parameters are as fol-
lows: Q = 5 · 10−3 C, k0 = 0.1, hL0 = 0.0983,
hM0 = 0.4966. The programmed motion is the equilib-
rium r⃗0 = s⃗0 in the orbital frame, where

r⃗0 = (γ1, γ2, γ3)
⊤ = (1/

√
3, 1/

√
3, 1/

√
3)⊤.

The results of computer modeling (Figs. 6, 7, 8) make
it evident that dissipative components of Lorentz (Fig. 6)
and magnetic (Fig. 7) torques taken alone can solve the
problem, but the integrated electrodynamic attitude con-
trol system (Fig. 8) solves the problem more effectively,
as it reduces the convergence time.
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Figure 6. MLdiss only operating

Figure 7. MMdiss only operating

Figure 8. MLdiss andMMdiss

2.3 Stabilization of an Earth-pointing satellite in
the two-axis programmed rotation

Further, we will consider the case where the Cz axis
of the dynamic symmetry of the satellite is stabilized
along the local vertical Cζ, and the satellite itself per-
forms a uniform rotation around this axis [Aleksandrov
and Tikhonov, 2012] with an angular velocity of ω⃗′

0 =

µk⃗ = (0, 0, µ)⊤. For this mode of motion,

r⃗1 = (cos(µt),− sin(µt), 0)⊤,

r⃗2 = (sin(µt), cos(µt), 0)⊤,

r⃗3 = (0, 0, 1)⊤.

The control torques (1) should ensure the existence and
asymptotic stability of the following regime of two-axis
programmed rotation of the satellite:

ω⃗ ′ = ω⃗ ′
0 , s⃗i = r⃗i , i = 1, 2, 3. (7)

To ensure uniform rotation of the satellite in the ro-
tating orbital coordinate system, it will be necessary to
compensate for the resulting gyroscopic torque directed
along the Cζ axis. In order to compensate for the speci-
fied gyroscopic torque, an additional term kL1r⃗2 can be
introduced into vector P⃗ or an additional term kM1r⃗3
into vector I⃗ . The coefficients in these terms, as it is
easy to verify, are selected from the condition of the ex-
istence of two-axis programmed rotation (7) based on the
dynamic Euler equations [Aleksandrov and Tikhonov,
2012], and are respectively equal

kL1 = Cω0µ/(vCξBη), kM1 = −Cω0µ/Bη.

In the case when two additional terms are introduced
(kL1r⃗2 in the vector P⃗ and kM1r⃗3 in the vector I⃗), each
of them must contain an additional multiplier, and the
sum of these multipliers should be equal to one. Taking
into account the restoring and dissipative components,
the control torques are as follows:

M⃗L = kLT⃗0 × T⃗ + hL(ω⃗
′
r × T⃗ )× T⃗

+εLkL1r⃗2 × T⃗ ,

M⃗M = kM B⃗0 × B⃗ + hM (ω⃗′
r × B⃗)× B⃗

+εMkM1r⃗3 × B⃗.

Here εL + εM = 1. Each of the control torques M⃗L

and M⃗M taken alone can solve the stabilization problem
(7). Consider these cases and compare the correspond-
ing solutions with those in the case where both control
torques M⃗L and M⃗M operate simultaneously in the in-
tegrated control system. In the last case, let us choose
εL = εM = 0.5.

For computer modeling consider a satellite [Aleksan-
drov and Tikhonov, 2012] with parameters A = B =
1000 kg·m2, C = 500 kg·m2, Q = 5·10−3 C which
moves in a circular equatorial orbit with radius R =
7 · 106 m. The programmed motion is the two-axis rota-
tion φ = 0, θ = 0, ψ = µt, where µ = 3ω0. The results
of computer modeling (Figs. 9, 10, 11) are shown in
terms of quaternion components calculated for one and
the same parameters and initial values. For convenience
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and clarity, the components of the quaternion are given
in deviations from the programmed motion (7).

It can be seen that the Lorentz control torque M⃗L can-
not stabilize (Fig. 9) the programmed motion (7). Mag-
netic control torque M⃗M performs well (Fig. 10). How-
ever, both control torques M⃗L and M⃗M in an integrated
control system provide higher stabilization accuracy at
the end of the time interval (Fig. 11).

Figure 9. ML only operating

Figure 10. MM only operating

Figure 11. BothML andMM

2.4 Threeaxial stabilization of a satellite in the
Koenig frame

In this subsection, we consider the problem of satellite
attitude stabilization in the Koenig frame [Aleksandrov
et al., 2016]. This problem is relevant not only for satel-
lites but also for different mechanical systems modeled
by rigid bodies. Let us consider the Koenig coordinate
system CXY Z, where the axis CY is orthogonal to the
orbital plane. Without loss of generality, let us assume
that in the programmed orientation, the main central axes
of inertia of the satellite coincide with the axes of the
Koenig frame of the same name. Then, the programmed
attitude motion of the satellite is described by the follow-
ing equations:

s⃗1 = r⃗1 = (cosu, 0,− sinu)⊤,

s⃗2 = r⃗2 = (0, 1, 0)⊤,

s⃗3 = r⃗3 = (sinu, 0, cosu)⊤, ω⃗ = 0⃗.

(8)

The gravity gradient torque occurs when the constantly
acting disturbing torque is in the programmed motion
(8). It is shown in [Aleksandrov et al., 2016] that the
gravity gradient torque can be compensated by means of
the Lorentz torque. Thus, the control torques are con-
structed in the form

M⃗L = (P⃗rest + P⃗diss + P⃗comp)× T⃗ ,

M⃗M = (I⃗rest + I⃗diss)× B⃗.
(9)

However, despite the fact that compensation for the con-
stantly acting perturbing gravitational torque can only
be provided by the Lorentz torque, it turns out that
the Lorentz torque is not enough to implement the pro-
grammed motion (8). For example, consider a satellite
with parameters A = 1000 kg·m2, B = 1700 kg·m2,
C = 800 kg·m2,Q = 5·10−3 C. As shown in Fig. 12, no
stabilization was observed in the case of only the Lorentz
torque operating. Stabilization of the programmed mo-
tion (8) is also absent in the case of exposure only to
magnetic restoring and dissipative torques (Fig. 13),
despite the presence of a compensating Lorentz torque.
Only in the presence of all terms in the control torques
(9) does the convergence of the control process with the
programmed motion (8) occur (Fig. 14).

Here, as in the previous subsection, the results of com-
puter modeling are expressed in terms of quaternion
components calculated for one and the same parameters
and initial values.

2.5 Threeaxial stabilization of a satellite in the
magneto-Lorentz frame

The coordinate system naturally combined with the
electrodynamic attitude control method is the magneto-
Lorentz coordinate system, the orts of which b⃗, t⃗, w⃗ are
directed, respectively, along the vectors B⃗, T⃗ , B⃗ × T⃗
[Tikhonov, 2021]. Therefore, it can be used as a ba-
sic coordinate system for solving a number of dynamic
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Figure 14. BothML andMM

Figure 12. ML only operating

Figure 13. MM only operating

problems of a satellite, equipped with intrinsic magnetic
moment and electric charge [Aleksandrov and Tikhonov,
2023]. This subsection discusses the issues of satellite
attitude stabilization in the magneto-Lorentz coordinate
system.

Let the unit vectors i⃗, j⃗, k⃗ coincide, respectively, with
the unit vectors w⃗, b⃗, t⃗ of the basic coordinate frame in
the programmed attitude motion. Denote σ⃗1, σ⃗2, σ⃗3 the
unit vectors w⃗, b⃗, t⃗ of the basic coordinate frame, ex-
pressed in the basis i⃗, j⃗, k⃗. Then the programmed atti-
tude motion of the satellite is defined by the equations

σ⃗1 =ρ⃗1 = (1, 0, 0)⊤,

σ⃗2 =ρ⃗2 = (0, 1, 0)⊤,

σ⃗3 =ρ⃗3 = (0, 0, 1)⊤,

ω⃗′ =0⃗. (10)

In the programmed motion (10), the satellite performs
an attitude motion with an angular velocity ω⃗b of the
magneto-Lorentz coordinate system. An explicit expres-
sion for the angular velocity ω⃗b as a function of time
is obtained in [Tikhonov, 2021]. As follows from the
Euler dynamic equations, the gravitational moment M⃗G

and the inertial terms form a constantly acting disturb-
ing torque M⃗d = M⃗G − J( ˙⃗ωb)xyz − ω⃗b × (Jω⃗b), where
( ˙⃗ωb)xyz is the local derivative of ω⃗b over time calcu-
lated in the coordinate system Cxyz. Therefore, the
construction of a stabilizing electrodynamic control that
ensures the operation of the satellite in mode (10) in-
cludes the creation of compensating torques. In [Alek-
sandrov and Tikhonov, 2023] it is shown that additional
components P⃗comp = |T⃗ |−1(Mdbρ⃗1 − Mdwρ⃗2) and
I⃗comp = −|B⃗|−1Mdtρ⃗3 should be added to controlled
vectors P⃗ and I⃗ , respectively. As a result, the control
torques have the form (6). Therefore, in the problem un-
der consideration, the programmed motion (10) can be
implemented only with the simultaneous action of the
both compensating torques M⃗Lcomp and M⃗Mcomp.

As for restoring and dissipative components, they can
be used independently or together at the same time.
For computer modeling, consider the same satellite as
in [Aleksandrov and Tikhonov, 2023]. It moves in a
circular orbit with radius R = 7 · 106 m and inclina-
tion i = 30 o. Inertial parameters and electric charge
are as follows: A = 1000 kg·m2, B = 600 kg·m2,
C = 1400 kg·m2, Q = 5 · 10−3 C.

The case when only the Lorentz restoring and dissipa-
tive components are operating is shown in Fig. 15. Obvi-
ously, there is no stabilization process. A similar result is
observed in the case where only magnetic restoring and
dissipative torques act (Fig. 16). Only when Lorentz and
magnetic torques are combined, the process of stabiliza-
tion of the satellite programmed motion (10) is observed
(Fig. 17).
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Figure 15. ML only operating

Figure 16. MM only operating

Figure 17. BothML andMM

3 Conclusion
Five problems of satellite attitude stabilization are con-

sidered, which are successfully solved using an inte-

grated electrodynamic attitude control system based on
the simultaneous use of the Lorentz torque and the
torque of magnetic interaction. It is established that at-
tempts to simplify the control system based on the re-
fusal to use any one of the mentioned torques lead either
to the failure of the mission or to a less effective solu-
tion. It is also established that, for some of the problems
discussed above, the realization of the desired attitude
motion of the satellite is fundamentally impossible with-
out the simultaneous use of the Lorentz torque and the
torque of magnetic interaction. In all the problems of
satellite attitude stabilization considered above, the solu-
tion was made taking into account the disturbing effect
of the gravitational torque, which is the most significant
for typical satellites in medium-altitude orbits.
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