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Abstract 
The paper deals with state-feedback robust control 

design methods for uncertain SISO continuous-time 

systems modelled using parametric uncertainties. A 

software tool based on advanced optimization tools 

(YALMIP toolbox with LMI and SeDuMi solvers) is 

presented applicable for robust motion control design. 

LMI-based control design to guarantee quadratic 

stability, H2 and Hinf performance specification is 

considered. A practical application is provided 

illustrating application of the individual robust control 

design approaches for a laboratory plant – a Modular 

Servo System.  
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1 Introduction 

   The fundamental problem in designing control 

systems consists in accurately controlling outputs of 

plants whose dynamics contain significant 

uncertainties. Generally, uncertainties are caused by 

inherent modelling/identification inaccuracies in any 

model of a physical plant which often brings about 

poor closed-loop performance or even instability. 

Uncertainties can be characterized and modelled in a 

number of ways; those ones caused by plant 

parameters varying over some a priori known compact 

set are denoted as parametric uncertainties. 

A possible way of coping with uncertainties is to 

apply robust-theoretical approach and related robust 

control design methods. Robust control can be defined 

as control of systems with uncertain dynamics using 

fixed-structure controllers to guarantee fulfillment of 

design specifications for a whole set of possible plant 

dynamics. A lot of robust control design methods are 

known from literature, e.g. [Ackerman, 1997; 

Bhattacharyya, Chapellat and Keel, 1995] in both the 

time and frequency domains. In the sequel, focus will 

be on the optimization-based approach according to 

which the robust control problem is reformulated to an 

optimization problem in form of linear matrix 

inequalities (LMI). LMIs are considered 

computationally tractable and the respective free 

solvers (SeDuMi) are available to solve them. 

However, LMI based solutions inherently include 

possibility to obtain ambiguous solutions when 

different solvers or computational parameters are 

chosen. This happens especially when solving a robust 

stability problem formulated as a feasibility one. 

In this paper three LMI-based robust state-feedback 

controller design methods for plants with parametric 

uncertainties have been applied to control a Modular 

Servo System (MSS) with interval varying 

parameters. The first method considers quadratic 

stability and the respective LMI condition [Boyd, 

Ghaoui, Feron and Balakrishnam, 1994]; quadratic 

stability is solved without and with minimization of 

the trace of the Lyapunov function matrix P. The 

second and third methods are based on minimization 

of the H2 and Hinf norms using LMIs, see [Henrion, 

2009] and references therein. LMIs have been solved 

in MATLAB using the YALMIP Toolbox [Löfberg, 

2004] with the LMI [Gahinet, Nemirovski, Laub and 

Chilali, 1995] and SeDuMi [Henrion and Lasserre, 

2003] solvers to be able to compare obtained results. 

If states of a dynamic system are not available through 

measurements or some of them are impossible or too 

expensive to measure, an output-injection observer 

design has to be included [Lewis, 1992]. The three 

above-mentioned robust state feedback controller 

design methods, the observer design and a back 

calculation anti windup scheme proposed by [Fertik 

and Ross, 1967; Åström and Hägglund, 1995] have 

been incorporated in the created software tool for 

motion control system design. 

The paper is organized as follows: in Section 2, a 

general structure of the motion control design tool is 

presented; its main modules are presented in Sections 

3, 4 and 5 with the focus on the robust LMI-based 

state-feedback control design in Section 3. In Section 

6 the motion control design software tool has been 

applied for a MSS laboratory plant. Conclusions are 

drawn at the end of the paper. 
 

2 Motion control design software tool: structure  
   The created software for motion control design is an 

advanced optimization tool for the control engineering 

community (students, researches, teachers, 

practitioners, etc.) having the following modules: 



 

 

1. Plant identification  

2. Modelling of uncertainties 

3. LMI-based robust state-feedback control 

design  

4. Observer design 

5. Anti-windup compensation 
 

Module 1: Plant identification 

To be able to model the uncertain plant, identification 

based on measured-data is performed in three different 

working points; continuous-time process models, or 

discrete-time polynomial models (ARX, ARMAX and 

IV4 model structures) can be selected. This module is 

not used if the plant transfer functions are already 

available. 
  

Module 2: Modelling uncertainties 

In this module, uncertainty model is calculated in 

form of interval or affine (polytopic) models [Vesely 

and Harsanyi, 2008].  

Other parts of the program are explained in 

respective sections of the paper. 
 

3 Robust state-feedback control design 

   In this section, basic notions and main results on 

robust stability based on Lyapunov stability approach 

are briefly recalled [Boyd, Ghaoui, Feron and 

Balakrishnam, 1994; Henrion, 2009]. 

Consider a linear continuous time-invariant system 
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where   nRtx  ,     lm RtyRtu  , are state, control 

and output vectors, respectively, A, B and C are 

known constant matrices of compatible dimensions. In 

what follows, a SISO plant will be considered, 

however the obtained results are valid for both SISO 

and MIMO plants. 

Consider a state-feedback controller in the form 
 

    tKxtu   (2) 
 

The resulting closed loop respective to (1) and (2) is 
 

        txAtxBKAtx c  (3) 
  

According to the Lyapunov stability theory the closed-

loop system (3) is stable if and only if there exists a 

symmetric matrix P such that 
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T

c PAPA  (4) 

 

Inequality (4) is a special form of a linear matrix 

inequality appropriate also for uncertain systems. 

Consider the uncertain plant to be modelled using 

interval model in the form 
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The interval model (5)-(6) can be rewritten in form of 

a state space model described by a polytope of linear 

dynamic systems defined by a list of its vertices: 
 

     NN CBACBA ,,,,,, 11   (7) 
 

where N is the number of vertices. Generally, such a 

polytopic description of the uncertain plant is 

beneficial in that it yields less conservative controller 

design results than if using other uncertainty 

descriptions [Boyd, Ghaoui, Feron and Balakrishnam, 

1994].The design methods described in the following 

subsections are implemented in the Module 3: LMI-

based robust state-feedback control design. 

 

3.1 LMI-based state-feedback control design:  

quadratic stability 

   The robust state-feedback controller design to 

guarantee quadratic stability is based on the polytopic 

description of the uncertain plant. Considering (1), (2) 

and (7), the closed-loop uncertain system has the 

following form 
 

        NitxAtxBKAtx
ici ,,1   (8) 

 

The state-feedback control design algorithm is based 

on the following theorem.  
 

Theorem 1. The polytopic system (8) is quadratically 

stabilizable if there exists a matrix 
nRK  1

and a 

symmetric positive definite matrix 
nnRP   satisfying 

 

    N,,,i,BKAPPBKA i
T
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The matrix inequality (9) can readily be transformed 

into LMIs [Boyd, Ghaoui, Feron and Balakrishnam, 

1994] yielding the following control design algorithm 

to guarantee quadratic stability. 
 

Algorithm 1a (Quadratic stability): 

Solve LMIs (10) for unknown symmetric positive 

definite matrix 
nnRQ   and a full matrix nRY  1 . 
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By including minimization of the trace of matrix P 

(equivalent to minimization of matrix (-Q) trace) to 

the inequalities (10) the, algorithm 1b is obtained: 
 

Algorithm 1b (Quadratic stability with minimization of 

trace(P)): 

Solve LMIs (11) for unknown symmetric positive 

definite matrix 
nnRQ   and a full matrix nRY  1 . 
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The result of both the above algorithms, the state-

feedback controller matrix K in the control law (2) is 

obtained according to 
 

 
1YQK  (12) 

 

3.2 LMI-based state-feedback design: H2 controller  

  Consider the continuous-time linear time invariant 

system 
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where   nRtx  ,   lr RtyRtu  )(, ,   lRtw   are 

state, control, output, and exogenous input vectors, 

respectively. We assume that the system (13) is 

strictly proper with 0uD  and consider a finite gain, 

i.e. 0wD . 

System (13) with the state-feedback controller (2) 

yields the closed-loop system 
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The corresponding closed-loop transfer function is 
 

     wu BKBAsICsG
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Consider the H2 performance specification in the form 
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2
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H2 norm is computed using the Lyapunov equation 
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For a polytopic uncertain system  
 

       NN C,A,,C,AconvC,A 11  (19) 

 

inequality (16) holds if and only if there exists a 

matrix K such that  
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The above inequality (20) can be rewritten as 
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for some matrix W  such that 
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The resulting robust LMI-based state-feedback H2 

controller design algorithm is as follows. 

 

Algorithm 2 (LMI–based robust H2 controller design): 

Solve LMIs (23) for an unknown symmetric positive 

definite matrix 
nnRQ  , a full matrix nRY  1  and 

a symmetric matrix    11  nnRW . 
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The resulting gain matrix K of the H2 suboptimal 

state-feedback controller (2) obtained from the 

solution of (23) is given by (12).  

 

3.3LMI-based state-feedback design: H-controller  

  Consider a continuous-time linear t-invariant system 

(13) with the state-feedback controller (2). We assume 

that (13) is strictly proper ( 0uD ). The closed-loop 

system is 
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Consider the H performance specification as follows 
 

   

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where the H norm is defined as the worst-case gain 
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Contrary to the H2 norm, computation of the H norm 

is iterative. 

For     DBAsICsG 
1

, inequality (25) is 

equivalent to the existence of a symmetric positive 

definite matrix P satisfying 
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Using the Schur complement, inequalities (27) can be 

expanded as follows 
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Consider the polytopic uncertainties  

 

       NN C,A,,C,AconvC,A 11  (29) 

 

The next algorithm involves the H performance 

specification (25) for the uncertain plant (24) with 

polytopic uncertainties (29). 
 

Algorithm 3 (LMI–based robust H controller design): 

Solve LMIs (30) for the unknown symmetric positive 

definite matrix
nnRQ  , a full matrix nRY  1

, a 

symmetric matrix 
   11  nnRW and the scalar 

R . 
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The resulting H optimal state-feedback gain matrix 

(2) is calculated according to (12). 

 

4. Observer design 

  In most practical situation it is unusual to have all 

states of a dynamic plant measurable due to various 

reasons [Lewis, 1992]. In such a case, the plant states 

can be estimated based on available measured outputs 

using a dynamic observer. Then, the state estimates 

can be used for the feedback as if they were the actual 

states, i.e.the control law (2) modifies as follows 

 

   txKtu ˆ
 (31) 

 

Module 4: Observer design 

Using the measured input and output variables 

   tytu ,  of a plant the observer generates an estimate 

 tx̂  of the state variable  tx  in (1) or (13). The state 

observer is a dynamic system described by 
 

        tLytButxAtx R  ˆ̂  (32) 

 

where 
nn

R RA  , 1 n
R RB  are matrices of the state 

observer, 
1 nRL  is the output injection matrix. To 

ensure that the estimation error  txtxtx ˆ)()(~ 
 
with 

the initial estimate )0(x̂
 
vanishes with time for any 

)0(~x , the output injection L  has to be selected so that 

the observer matrix LCAAR   is asymptotically 

stable. By appropriately choosing L, eigenvalues of 

RA  can be assigned to desired locations if and only if 

 AC,  is observable.  

In the Module 4 of the developed software tool 

computation of the matrix L is realized using the 

Ackermann’s formula. According to a general rule, to 

achieve a suitable accuracy in the state estimate the 

slowest observer pole should have a time constant 5-

10 times faster than that of the fastest pole of the 

plant; however, location of the observer poles has to 

be chosen carefully to avoid too high gains which may 

be unfeasible in practice. 

 

5 Anti-windup compensation 

   When PID control algorithms are used to control 

plants with saturated input, undesirable nonlinear 

effects such as windup may occur To avoid the 

actuator saturation, the back calculation anti windup 

scheme proposed by [Fertik and Ross, 1967] is used in 

the proposed software tool.  

 

 Module 5: Anti-windup compensation 

When the controller output saturates, the back 

calculation does not reset the integral instantaneously 

but dynamically with a tracking time constant 

tT which governs how quickly the integral term is 

being reset. Smaller tracking time constants reset 

integrator quicker which may seem to be an advantage 

at first; it is recommended to choose the tracking time 

constant between the integral and the derivative time 

constants [Åström and Hagglund, 1995; Åström and 

Hägglund, 2005]. 

 

6 Robust motion control design for a Modular 

Servo System laboratory plant 

Plant description 

The Modular Servo System (MSS) consists of the 

Inteco digital servomechanism and open-architecture 

software environment for real-time control 

experiments [INTECO, 2007]. The measurement 

system is based on the RTDAC4/USB acquisition 

board equipped with a D/A and A/D converters. I/O 

board communicates with the power interface unit. 

The whole logic necessary to activate and read the 

encoder signals and to generate the appropriate 

sequence of the PWM pulses to control the DC motor 



 

 

is configured in the Xilinx® chip of the RT-

DAC/USB board. All functions of the board are 

accessed from the Modular Servo Toolbox, operating 

directly in the MATLAB Simulink environment.  

MSS consists of the following modules arranged in 

the chain (Fig. 1): a DC motor with a generator, inertia 

load, encoder, magnetic brake and the gearbox with 

the output disk. In our experiments the backlash 

module was not applied. The servomechanism is 

connected to a computer where a control algorithm is 

based on measurements of the angular displacement 

and the angular velocity.  

 

 
Figure 1. Modular Servo System (MSS) 

 

Identification of the uncertain plant 

Transfer functions for angular velocity have been 

obtained via identification in three working points; the 

results are summarized in Table 1. 
 

The corresponding interval model in the state space is 

in form 
 

           
       txbtCxty

tutxatButAxtx

0

10




 (33) 

 

where  

609431863022590 . ,.b  , 82551409110 ., ,a   

 

Table 1. Transfer functions for angular velocity in 

individual working points 
 

Work-

ing 
point 

Manipula-

ted variable 
u [V] 

Output 

variable y 
[rad/s] 

Transfer 

function 

1 0.4 47  
7089.1

9195.298
1




s
sGp

 

2 0.6 80  
8255.1

6094.318
2




s
sGp

 

3 0.8 120  
4091.1

6302.259
3




s
sGp

 

 
 

If a PI controller of angular velocity is to be 

designed to reject the external input 

(reference/disturbance), the state space model has to 

be augmented to include its internal model. In case of 

setpoint tracking the augmented model reads as 

follows: 
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In such a case the corresponding state-feedback design 

yields the gain matrix K composed of two parts: 
 

  IP KKK   (35) 
 

where KP is the proportional and KI  the integral part of  

the state-feedback controller. 

If a full state-feedback controller of angular velocity 

is to be designed based just on angular displacement 

measurements, the state vector is to be estimated. As 

angular displacement is an integral of angular 

velocity, nominal transfer function (mean value 

parameter model from the models in Tab. 1) with 

integrator was considered as the model of the 

controlled plant with the poles 1=0, 2=-1.5905. 

Desired poles of the state observer matrix have been 

chosen 
 

  15151   (36) 
 

The resulting output injection matrix is 
 

 








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Robust state feedback controller design 

Using the created LMI-based robust state-feedback 

design tool, parameters of the angular velocity state 

controller to guarantee quadratic stability (QS) 

(Algorithms 1a and 1b), as well as the H2 and H 

controllers (Algorithms 2 and 3) were designed. The 

best results are presented in Table 2. 

 
Table 2. PI controllers of angular displacement designed by 

LMI approaches  

method 
minimi-

ze 
solver 









I

P

K

K
 

QS no SeDuMi 








5923.3

742.1862.637
 

H2 - LMI 








14088.0

1653.7852.62
 

H - LMI 








0313.1

875.1724.181
 

 

As the manipulated variable is limited within the 

interval 1,1 , the anti-windup compensation was 

activated with 1.0tT . 

Remark: In the implementation of the state-feedback 

controller on the MSS, angular velocity is measured in 

degrees   syst deg/  and angular displacement in 

radians   radyrad  , hence this conversion has to be 



 

 

considered along with the transmission ratio (1:100) 

as follows 

 radst yy
100

180
  (38) 

 

Experimental results obtained by applying the three 

designed observer-based controllers to the MSS plant 

are shown in Fig. 2. Closed-loop step responses under 

the quadratic stability (QS) controller with and 

without minimization of trace P, and the H2 and H 

controllers obtained by various solvers (LMI and 

SeDuMi) are compared. Figure 3 shows the respective 

control variable responses. 

 

7 Conclusion 

The paper presents an LMI-based software tool for 

robust motion control system design. Three basic 

state-feedback control design methods for uncertain 

continuous-time systems modelled using parametric 

uncertainties are implemented based on advanced 

optimization approaches (YALMIP toolbox with LMI 

and SeDuMi solvers). A practical application is 

provided illustrating application of the individual 

robust control design approaches for a laboratory 

plant. Implementation of these approaches to a real 

plant (observer-based angular velocity control of a 

Modular Servo System) illustrates effectiveness of the 

proposed methods.  
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Figure 2. Closed-loop step responses of angular velocity 

under individual observer-based state-feedback controllers 

designed using the LMI and SeDuMi solvers. 
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Figure 3. Control variable time responses under the 

individual designed controllers  
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