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Abstract 
  On the basis of vibrational mechanics approach and 
method of direct separation of motions the behavior of 
gas – fluid – solid "heavy" particles system in a 
vibrating vessel is considered. 
  The analysis of the received nonlinear equation of 
slow motions of a particle in the field of standing wave 
has allowed to come to rather simple conditions of 
dipping gas bubbles in to the fluid and floating heavier 
particles. In these instances the system tends to a 
maximum of potential energy as to a steady state. 
Peculiar “vibrating instability” of stable without 
vibration of separate state of gas - fluid and fluid – 
denser than fluid particles systems in the field of 
gravity has been revealed. The "slow" self-oscillating 
phenomena in system have been described. The results 
are in good agreement with experimental data of the 
authors and other researchers. 
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1 . Introduction 
 Under vibration in the gas medium of the vessel with 
fluid peculiar nonlinear effects are observed; in 
particular, suction of gas bubbles deep into the vessel 
and on the contrary, floating of bodies which are 
heavier than fluid. In other words, "anomalous" 
behaviour of the system occurres that is under certain 
conditions it evolves to the states corresponding not to 
minimum, but to maximum or close to them value of 
potential energy. 
 These and allied questions which are of considerable 
fundamental and applied importance, were considered in 
many publications also written by outstanding scientists; 
the list of references is far from being full. At the same 

time the problem cannot be still considered 
exhaustively investigated. 
 The given work develops and completes the mentioned 
researches both theoretically and experimentally. Here 
the conditions of dipping bulbs and floating a "heavy" 
body have been received in rather simple form by use 
of vibrational mechanics approach and by the method 
of direct separation of motions. Results have been 
compared with experimental data. 
 In the work only the factors which are minimally 
necessary for explanation and description of the basic 
observed effects are taken into account. Thus, the self 
dynamics of bubble and the corresponding resonant 
phenomena are only partially considered; nonlinearity 
of dissipative forces, interaction of particles, cavitation 
phenomena, vessel deformability have not been 
considered; a relatively low-frequency vibration has 
been taken up. 
 The significant impulse to the researches in this area, 
including to the given work, was given by the 
publication of academician V.N. Chelomey [Chelomey, 
1983]. The authors devote this work to his memory. 
 The authors are deeply grateful to D.A. Indeytsev and 
V.V. Pototsky for substantial discussion. 
 
2. Experimental research 
 The experiments were carried out on the vibrating 
stand of “Mekhanobr” institute (Fig. 1).  

 
Fig. 1. Photo of  installation. 



  

The glass cylindrical vessel – a flask with internal 
diameter of 60 mm was fixed on the table of the stand; 
the vessels of smaller and much more major diameters 
were also used. The vessel was filled with water up to 
the level of 180 mm, then vertical harmonious 
oscillations with constant amplitude A = 6.5 mm were 
imparted to it. The change of system behaviour with 
slow increase of frequency ω  is schematically 
presented in Fig. 2. The system condition was observed 
both directly and at stroboscopic lighting with flash 
rate equal to ω . 

 
Fig. 2. Critical values and typical variation intervals of 

vessel oscillation frequency. 
 

  In the interval 1
10 170 sω ω −< < =  fluid remained 

clear. Near the surface the gradually growing fluid 
layer occurred with increase in frequency which was 
saturated with bubble of various sizes. With 

1
1 170 sω ω −> =  there were intensive chaotic 

oscillations of the fluid surface, and separate splashes 
amounted to 180 mm. With frequency 

1
2 190 sω ω −= ≈  the dipping of bubbles at the total 

depth of the vessel was observed and at that bubbles 
with diameter of nearly 1-2 mm were more or less 
uniformly dispensed in the volume. With 

1200 210 sω −= −  the drift of such and smaller bubbles 
downwards was so intensive that the whole volume of 
fluid notably grew turbid, solved milk in water. 
Dipping bubbles were forming an air space ("cushion") 
near the bottom of the vessel. When the cushion 
amounted to the certain volume ( 1

4 220 sω ω −= ≈ ) 

an air bubble swarm, forming "cushion", with 
characteristic noise uprushed and rose on the surface. 
After that at the same frequency situation repeated: 
bubbles were dipped, again forming a cushion etc. In 
other words the asynchronous excited self-oscillations 
occurred. Their period was 2÷3 s. At that the general 
rate of fluid-gas mixture in the vessel was raising to 
290 mm which corresponded to gas content α ≈38%. 
In the interval of frequencies 1220 230 s−÷  

5 6( )ω ω ω< <  there was the floating of particles, which 
were denser than water (rubber pieces of 5 mm size and 
balls of 10 mm size). With frequency

3ω ω λ= = , close  
to 

2ω , the passage through a resonance corresponding 
to the frequency of free oscillations of water column on 
the air cushion took place. At that Sommerfeld’s effect 
was observed [Blekhman, 2000; Blekhman, 2006]. The 
other experiments are considered below.  
 
3. The equation of particle motion 
 The equation of particle motion in vibrating fluid or in 
gas-fluid medium located in the vibrating vessel (Fig. 
3), we write down in the form  

0 0
1
2( ) ( ) ( )vx kx v gρ ρ ρ ρ ξ+ = − + − +          (1) 

Here x  – coordinate of a particle relative to a vessel, 
counted from undisturbed fluid surface vertically 
downwards, v– volume of a particle, ρ – its density, 

0ρ – medium density, g – gravity acceleration, kx  –
medium resistance force, assumed either linear or 
linearized. The value of 0

1
2 vρ  in the left part of the 

equation approximately considers the additional 
medium mass. Absolute medium acceleration in the 
place of particle location is denoted by ( , )x tξ ω  (we 
consider, that medium is deformable and ξ  changes 
along x  relatively slowly). 

 
    Fig. 3. System  scheme. 

 
We’ll be finding acceleration ξ  from the supposition, 
that medium is saturated with gas with volume 
concentration α  at some depth h H≤  (H – an initial 
level of fluid in the vessel) and can be considered as an 
elastic rod. As is known, sound speed in such rod for 
air bubbles with radius 310a −> cm to an accuracy of 
less than 5 % can be determined by the formula 
[Batchelor, 1968] 

10/ (1 )c α α≈ −   (m/s)                   (2) 
This speed is paradoxically low. So, at 0.4α =  we 
have 20c ≈ m/s, i.e. more than next lower order than 
sound speed in the air. This circumstance plays the 
important role at explanation of the phenomena 
involved. 
 From the solution of the wave equation 2c gξ ξ′′= +  
under boundary conditions 

0
0

x
ξ

=
′ = ; sin

x h
A tξ ω

=
=  

(A – amplitude of the vessel vibration, we consider, 
that at h x H≤ ≤  fluid oscillates as a solid body 
together with the vessel), we find: 

     
( ) ( )2

( )sin ,
( ) cos / cos /

x t
x A x c h c

ξ ω
ω ω ω

= −Ψ

Ψ =
             (3) 

Allowing for these expressions the equation (1) takes 
the form 
         [ ]1 ( )sin ,x k x x t gκ ω= − + −Ψ +               (4) 

                    
1 0

0 0

1
2

1
2

/( ) ,

( ) /( )

k k vρ ρ

κ ρ ρ ρ ρ

= +

= − +
                   (5) 

 



  

4. The equation of slow motion (the basic equation 
of vibrational mechanics).  Some motion regularities      
 The general analytical solution of the nonlinear 
nonautonomous equation (4) is hardly possible. 
However this equation differs only in notations from 
the equation of particle motion in the field of standing 
wave, considered in particular in the book where for 
this purpose the approach of vibrational mechanics and 
the method of direct of separation motion are used. 
According to this method the solution takes the form 
                        ( ) ( ) ( , )x t X t t tψ ω= + ,               (6) 
where   X – "slow", and ψ  –  fast  component  2π – 
periodical over tω  constituent with a zero average over 

tω  . Here for the main slow constituent the equation is 
written as  
                            1 ( )X k X g V Xκ= − + +                   (7) 
where 

( )

2 2
2

2 2 2 2
1 1

2 2
2

2 2 2
1

1 1
2 4

1
4

( ) ( ) ( ) [ ( )]

sin 2 ,
cos /

V X X X X
k k

A XA
h c k c c

κ κ
ω ω

κ ω ω ωω
ω ω

′ ′= − Ψ Ψ = − Ψ =
+ +

= ⋅ ⋅
+

                                      ( )X h≤                                (8) 
– so-called  vibrational  force  (in this case 
“vibrational acceleration” but we conventionally use 
the term "force"). Occurrence of the vibrational force 
(8) in the equation (7) accounts for almost all effects 
described in item 2. 
 The difference between expression (8) and the 
expression received in the book [Blekhman, 2000] lies 
in the using expression (3) and also in the fact that in 
the solution of fast motion equation it is used not so-
called purely inertial approximation, but the viscous 
resistance force 1kψ  is also considered; it can turn out 
to be essential in case of fine particles at rather low 
frequencies ω  (see below). Equation (7) after simple 
transformations is reduced to the equation of pendulum 
motion, well studied in the theory of nonlinear 
oscillations. It is noteworthy, that it corresponds to 
potential system (in the presence of dissipation) 
whereas the initial equation (4) answers essentially 
non-conservative system; such systems refer to the 
class of potential on average systems 
[Blekhman, 2000]. Consider next equation (7) 
separately for the case with gas bubbles and solid 
particles. Here we note some general consequences: 
    1) If ( )V X gκ<< , that is vibrational force is much 
less than weight of a particle in fluid, then a particle in 
the steady mode moves with an almost constant speed 

1/X g kκ=  (floats in case of а bubble and dips in case 
of a particle, heavier, than medium). 
    2) In another extreme case ( )V X gκ>>  the particle 
"is attracted" as to the stable positions to nodes of wave 

0X , where 0X  – the roots of equation 0( ) 0XΨ =  (in 
our case – to the points where 

0.5 0,1,2/ ( ), ,...X h n nω π= + = ),  i.e. it moves 
in the line of decrease function ( )XΨ  (in our case – 

in the line of decrease cos /X hω  ). 

   3) In intermediate cases a particle is attracted to 
points X∗ , where ( )V X gκ∗ =  and at that 

( ) 0V X∗′ < ; at ( )g V Xκ ∗<<  these points are 
situated near the nodes mentioned in item 2), their 
coordinates can be found from the equation given 
above. 
   It should be stressed that expression (8) was resulted 
here at “minimally necessary” suppositions and by 
means of relatively simple method. Similar expressions 
resulted at different, more complicated admissions and 
by means of rather difficult methods are known 
[King, 1934; Zarembo and Krasilnikov, 1966; Ganiev 
and Ukrainsky, 1975]. It’s notably that the majority of 
such expressions contain multiplier ( )2sin /X cω , 
however essentially varied in coefficient. It leads to 
various conclusions about “attraction” of particles to 
wave nodes or antinodes. Experimental data are also 
conflicting in a number of cases. Rather exotic 
dependence of points of attraction on relative density of 
particles and medium are practically important (if they 
are true).   
 Vibration force (8) can be interpreted as radiation 
pressure determined with the fast constituent of particle 
motion ψ . 
  If medium density 0ρ changes along coordinate X then 
function ( ) ( )x xκ Ψ  plays the role  of ( )xΨ , at that 

( )xΨ  must be determined from the wave equitation with 
variable coefficients. Studying such cases is an 
independent problem. Here we in the main consider step 
change 0ρ  along x . 
 
5.  A condition of gas bubble dipping. The 
phenomenon of vibrational unstability of an 
equilibrium position of gas-fluid system in the field  
of  gravity  
In the case of an air bubble 0ρ ρ  and, according to 
(5), κ ≈ –2. Then, as it follows from equation (7) if at 
the boundary of the front of gas phase propagation 
X h=  the inequality ( ) 2V h g>  or, allowing for (8), 

the relation 

          
2 2

2 2
1

1A A hQ tg
k c g c

ω ω ω ω
ω

= ⋅ ⋅ >
+

,        (9) 

are satisfied, then bubbles will propagate deep in to the 
vessel formed in a layer with thickness h . If 
acceleration X  is small than bubbles velocity on the 

front is [ ]
1 1

1 2( ) 2 ( 1)X h
gX V h g Q

k k= = − = − . 

 Inequality (9) is possible to consider as a condition of 
vibrational unstability of separate state of gas-fluid 
system in the field of gravity. It is easy to see, that at 
not very high frequenciesω , as in our experiments, it 
can be satisfied only with availability of a gas-saturated 
layer near to a fluid surface, when sound speed c  is 
comparatively low (as it was mentioned, at 0, 4α =  
we have c ≈ 20 m/s that in the air c ≈  330 m/s, and in 
water c ≈ 1500 m/s!). Thus, for explanation of the 
discussed unstability and bubbles dipping an important 



  

point is turbulization of some fluid layer near the free 
surface with intensive fluid kicks   above   the   surface   
and   with formation of bubbles of different sizes 
penetrating at significant depth (in conditions of our 
experiments - up to 5 – 7 sm). Various points of view 
about physical reason of this effect are expressed (see , 
for example, [Grigoryan, Yakimov and Apshtein,  
1967; Tatevosyan, 1997]. Here we take this effect as 
experimental fact; we remind that in our experiments it 
occurred starting with the frequency 1170 sω −=  at 
amplitude of 6.5 mm and remained at the further 
increase ω  that is coordinated with the results of work 
[Tatevosyan, 1997]. It can be said, that the surface 
layer is considered by us as the vibrating generator of 
the bubbles. According to work [Abiev, 2000], the 
radius of generated bubbles is stable enough and is 
about 0.7 mm that also corresponds to our 
observations. Such bubbles at frequencies 1200 sω −<  
can be considered as solid particles. 
 Note, that if "capacity" of generator is less, than the 
bubbles discharge through the section of front 

X hX Sα= ⋅  ( S  – cross section area of the vessel) 
then it is natural to expect, that bubbles  will dip not as 
a continuous flow, but in the form of a swarm; it also 
corresponds to experimental observations. 
 It should be stressed that according to (9) bubbles dip 
only if the value of thickness ratio of gas-saturated 
compressible layer /h cω exceeds certain critical 
value which depends on other nondimensional 
parameters. 
  In Fig. 4 there is an areas of changing parameters 

2 /A gω  and /A cω , specified with condition (9) 
(shaded area). An upper curve corresponds to a 
relation 5h A= , and a lower one corresponds to 

10h A= . It is also accepted that 0, 4α =  and 
2 2

1k ω ; the last corresponds at frequency 
1200 sω −≈  to bubbles  with radius 0, 4a > mm and 

6k aπµ=  (Stokes formula; µ – dynamic viscosity 

factor). The sign ∗  marks the point corresponding to 
the beginning of dipping bubbles in our experiments. 
Evidently, at 10h A=  the agreement is rather good. 
 

 
Fig. 4. Variation ranges of vibration parameters when 

bubbles dip deep into a vessel. 
 

 The significance of the layer saturated with bubbles 
for the initiation of dipping bubbles deep into the 

vessel is proved by the following experiment. At 
frequency 1130 sω −≈  when bubbles in a surface layer 
are still not generated, the air is blown in through the 
lance in the upper layer or the air balloon in thin rubber 
covering was placed in it. Both variants at once 
initiated dipping bubbles deep into the vessel. Similar 
by implication experiments were carried out earlier in 
work [Grigoryan, Yakimov and Apshtein,  1967]. 
 Moreover we carried out the experiment with the 
vessel where fluid surface was closed with 
polyethylene film. In that case in the whole range of 
changing frequency ω  fluid moved as a single whole 
together with the vessel; bubbles formation wasn’t 
observed in it. That experiment also proves an 
important role of fluid compressibility and absence of 
cavity bubbles formation in the conditions of 
experiment. 
  
6. The bubbles, drifting to standing wave antinodes 
  The present consideration covers the case when the 
particle can be taken as solid-state. This condition at 
frequencies 1200 sω −<  is satisfied by air bubbles 
with radius less than 1  mm. Such bubbles are 
“attracted” to the amplitude ( )XΨ  nodes  of a 
standing wave as to the stable positions. As follows, in 
particular, from works [Kremer, 1994; Blekhman, 
2006], bigger bubbles which frequencies of free 
oscillations are close or less  ω , in the certain ranges 
of changing ω  are gravitated to the points close to the 
amplitude ( )XΨ  antinodes. 
 
7. Conditions of floating particles, denser, than fluid 
 Consider two models of system behaviour leading to 
the floating "heavy" particles in the vibrating vessel 
with fluid. In both these models the main role is given 
to formation of standing wave node inside of fluid 
column which attracts a particle. As the first model it is 
supposed, that the column of fluid is uniformly 
saturated with air bubbles. Medium oscillations in this 
case are described by formula (3) at h H= . From 
equation (7) it follows, that a condition of floating the 
body laying at the bottom of the vessel (X=H) is 
inequality ( ) 0g V Hκ + < , or, allowing for (8), relation 

            
2 2

2 2
1

1

2
1A A Htg

k c g c
ω κ ω ω ω

ω
⋅ ⋅ < −

+
     (10) 

 At gradual increase of frequency ω  this inequality 
will be satisfied, if conditions are satisfied 

       
2

H
c

π ω π< <  ,              

2 2

2 2
1

1

2
1A A HD tg

k c g c
ω κ ω ω ω

ω
= ⋅ ⋅ ⋅ >

+
        (11) 

 The first of these conditions means, that the wave 
amplitude ( )XΨ  node  is above the bottom of the 
vessel, and antinode is as though below the bottom.  
As the second model consider the system representing 
fluid   mass  1 0m S Hρ= ,  connected  with  a vessel 

by a spring of stiffness 1c  (Fig. 5). 



  

 
Fig. 5. System scheme with air cushion. 
 

 Unlike the first model medium deformability is 
supposed here not uniformly distributed, but 
concentrated in the bottom part of the vessel. Such 
situation emerges naturally. As bubbles are collecting 
near the bottom of the vessel, air cushion is being 
formed. Free oscillations frequency of the fluid column 
on this cushion λ , verging towards value 2ω , 
decreases (in Fig.2 it is conditionally shown with an 
arrow←). As a result even if frequency of 
oscillations ω  is kept close to 

2ω  and especially at 
increasing ω , the resonance occurs (it is fixed in the 
experiment; see point 2). 
 Amplitude of fluid column oscillations under 
oscillations of the lower end of a spring according to 
the law sinA tω  (without taking into account 
dissipation) is 
                                    2 1G A z= −                       (12) 

where z ω λ= , and 1 1c mλ = – frequency of free 

oscillations for which the formula  is known 
([Nigmatulin, 1987, v. 2, p. 105]) 
                           0 0 0Y Hpλ ρς=                      (13) 

Here 0p – atmospheric pressure, ς – polytropic 

coefficient, 0Y – height of purely air space. The 
following expression is obtained from here for the 
height of a water-air layer 1Y : 

                      0 2 0
1 2

0

1Y
Y z

H
p

α α ρ ω
ς

= =            (14) 

When 2z = formula (12) gives G A=  and when 

2z >  we have G A< . Simple research shows that 
these conclusions are true if we take into consideration 
dissipation at that when 2z >  formula (12) is rather 
exact in the wide range of changing dissipation 
coefficient. As a result of decreasing amplitude G  in 
comparison with A  when 2z > , the condition of 
bubbles dipping (9) stops being fulfilled and fluid 
according to the experiment becomes clear; it oscillates 
like a solid body on the “soft” spring. 
  Estimate vibrational force ( )V Y  when 2z > . We’ll 

consider, that at the bottom of a vessel 1y Y=  medium 
oscillates with amplitude A , at the level 0y =  being 
practically opposite in phase with amplitudeG , and 
assume that in the interval 10 y Y< <  the removal 

changes linearly ( y  is counted off down from the level 
of air space). In other words, the case in point is 
standing wave with the node in 
point ( )1 10 /y GY A G Y< = + < . For such wave: 

       2 2

1 1

,A G A Gy G
Y Y

ω ω
 + +′Ψ = − Ψ =  
 

      and, 

according to the first part of formula (8) where X is  
 replaced by Y , 

   ( )
( )

2 2
2 2 2

22 2 2
1 1 1

1

2 1

2

( ) 1 ,A Y zV Y z A
k Y Y z

z

ωκ ω
ω

 
= − −  + − 

>

(15) 

    According to equation (7) the condition of particle 
detachment from the bottom is 
inequality ( )1 0V Y gκ+ < , which at the account of (15) 
takes the form 

          

( )

2 2 2

2 2 2
1 1

1
1

2 1

2

,A z AR
k Y z g

z

ω ωκ
ω

≡ >
+ −

>

      (16) 

 The height of lifting a particle above the bottom of the 
vessel 1h Y Y∗ ∗= − , where Y∗ – a coordinate of the 
quasiequilibrium point, defined from equation 
( ) 0V Y gκ∗ + = .  

 As a result we found 

                      ( )
2

1 2

1
2

1 ,z Rh Y z
z R∗
− −

= >    (17) 

It is easy to make certain, that this position of a particle 
is steady. 
 Observations and calculations on the reduced formulas 
show, that in conditions of our experiments the first 
model is realized. However, it’s evidently that with 
rather different conditions the process goes according 
to the second model.  
 Note that in our experiments ratio 

4 2/ω ω  turned to be 

equal to  /220 190 1,2≈ , which is rather lower than 

limiting theoretical value 2 . 
 

8. The "breakthrough" of an air “cushion” and self-
oscillating cycle of  system behavior   
 As it was noted in item 7, when air “cushion” reaches 
the certain volume corresponding value z ,  exceeding 
a little 2z = , the growth of space stops, as the 
bubbles do not dip any more. The increase in this 
parameter due to the increase in frequency ω  results, 
according to (12), in further decreasing of oscillations 
amplitude G  of a fluid column. At some value 

5ω ω=  and accordingly 5 /z ω λ=  (Fig. 2) amplitude 

decreasing G  becomes so significant, that air is not 
kept any more by vibrational force near the bottom of 
the vessel, and it breaks upwards. This breakthrough 
can occur and with smaller values of z  and ω  if there 
are enough disturbances [Ganiev and Ukrainsky, 1975]. 



  

 After the breakthrough of cushion at the fixed values 
of frequency ω  in the certain range the whole cycle of 
system change repeats (in our experiments – each 2 – 3 
s). In other words, so-called asynchronous excitation of 
self-oscillations takes place.  
 
9. Conclusion 
  In the work the behavior of fluid – gas – solid body 
system in the vertically vibrating vessel has been 
experimentally studied. The effects of air bubbles 
dipping inside of fluid and floating particles, denser, 
than fluid and also self-oscillatory processes have been 
observed. For these effects, as well as for a classical 
system – a pendulum with a vibrating axis of 
suspension – the change of potential energy of system 
in a direction of maximum, instead of minimum, as in 
systems without vibration, is typical. 
 All these effects are physically explained and 
mathematically described on the basis of the united 
approach – vibrational mechanics and the method of 
direct separation of motions. Such approach leads to a 
rather simple differential equation of slow particle 
motions. The conditions providing bubbles dipping and 
floating of "heavy" particles follow from this equation. 
 Physical basis of all observed effects is the fact of 
fluid saturation at vibration with air bubbles and 
essential decrease in sound speed in such medium (up 
to 20 m/s). In turn specified saturation occurs as a 
result of peculiar lack of stability in a separate state of 
a fluid – gas system in the field of gravity. Such 
unstability occurs in conditions of rather intensive 
vibration with rather intensive disturbances – 
occurrence of the layer saturated with gas near the free 
fluid surface. One of the basic results of the given 
research is an explanation and mathematical 
description of this "vibrational" instability. 
 We have paid attention to the formation of the state of 
saturation with small air bubbles in vibrating fluid 
which can be named as the phenomenon of a 
pseudosupercritical fluid occurrence. The explanation 
and description of asynchronous excitation of self-
oscillations has been given in system under vibration. 
So-called critical values of oscillation frequency at 
which there are qualitative changes in system 
behaviour have been introduced. 
 Dipping of bubbles and floating of “heavy” particles 
can be regarded as the effects of vibrational motion, 
conditioned by traditional type of asymmetry. 
   The work was supported by RFBR (grants 07-08-
00241 and 06-08-01015). 
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