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Abstract: Localized or windowed data denoising based on linear transforms equipped with
some thresholding operator is a usual approach in modern signal and image processing.
With overlapping windows, techniques of this kind can be interpreted as overcomplete
(redundant) data transforms (representations). In the simplest formulation, the Þnal
estimates for points belonging to multiple overlapping windows are calculated as the mean
of the estimates independently obtained for each of the windows. In this paper we propose
a general approach leading to a mix-distribution modeling of the overcomplete data and to
least-squares optimal Þnal estimates in the form of weighted average of the least-square
estimates for the windowed data. Experiments demonstrate the advanced performance of
this class of the algorithms, in particular in comparison with the standard ones using the
sample averaging of the windowed estimates. Copyright c!2007 IFAC
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1. INTRODUCTION

Overcomplete representations arise naturally when
data are processed by overlapping subsets, i.e. win-
dows or blocks, and multiple estimates are obtained
for each individual point (e.g., (Elad, 2006), (Guleryuz,
2006) and references therein). Estimation is com-
posed from three successive steps: Þrst data win-
dowing (blocking); second, window-wise process-
ing; and, third, calculation of the Þnal estimate by
fusing the multiple window-wise estimates. It is
found, that this sort of redundant estimates essentially
improves results versus the standard non-redundant
transform-thresholding procedures. For example, it
is well known that translation-invariant undecimated
wavelets (Coifman and Donoho, 1995) are a dra-
matically more effective domain than the basic fully
decimated orthogonal (or biorthogonal) wavelets for
denoised a signal by shrinkage; the realization of
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such particular approach, so-called �cycle-spinning�,
is very simple: it applies the fully decimated transform
on all translated replicas of the noisy signal; thresholds
this overcomplete set of coefÞcients and inverts the
transform, obtaining in this way an estimate of each of
the translated replicas of the original signal; translates
back these estimates to the original position, where
they are averaged together, thus producing the Þnal
estimate of the signal. Because of its relative sim-
plicity, this procedure is extremely popular and sym-
bolizes the importance of overcompleteness and re-
dundancy in signal Þltering. In imaging, in particular,
the overcomplete methods attenuate the ringing effects
and other artifacts typical for the standard orthogo-
nal transforms (see, e.g., (Hua and Orchard, 2003),
(Öktem et al., 1999), (Yaroslavsky et al., 2001), and
(Öktem et al., 2001)).

A proper design of all the three main stages of these
methods is of importance. In particular, it is well
known that the sample average for fusing of the
window-wise estimate, routinely used in many meth-
ods, can be improved by replacing it by a weighted



average. A number of advanced denoising algorithms
demonstrating a very good performance have been re-
cently developed explicitly based on the overcomplete
Þltering in localized transform domain using a data-
adaptive weighted average to combine the redundant
local estimates. The discrete cosine transform (DCT)
Þltering with the adaptive-size square window is pro-
posed in (Foi et al., 2006). Further development of
this idea results in the shape-adaptive DCT transform
Þlter (Foi et al., 2007a), where starshaped adaptive
neighborhoods are found for each estimation point. In
both these methods for each point we obtain the multi-
ple estimates fused together with the adaptive weights
into the Þnal estimate. Variants of these algorithms for
non-Gaussian noise models are also proposed (Foi et
al., 2006), (Foi et al., 2007b). A different and innova-
tive idea is exploited in (Dabov et al., 2007) where the
matching of the image blocks is used for 3D grouping
of 2D image data, then processed using the so-called
collaborative Þltering. In this case we again arrive to
the multiple blockwise estimates fused for calculation
of the Þnal estimate of each individual point.

However, these advanced algorithms have been de-
veloped based mainly on the intuitive heuristic ideas.
One of the motivation of this paper is to develop a
theoretical base for this class of algorithms, with the
aim to develop a general framework for design and
optimization of the procedures based on the overcom-
plete representations.

In this paper we concentrate on the two last stages
of the overcomplete signal processing, window-wise
Þltering and estimate fusing, assuming that the win-
dowing (i.e., the Þrst stage) is given and Þxed. In
particular, we propose a mix distribution model from
which the Þltering in the window-wise processing and
the following fusing can be jointly derived, provid-
ing least-squares optimal estimates. Thus, this special
modeling suggest a sense in which the above algo-
rithms can be interpreted as optimal ones.

2. OBSERVATION MODELING AND
OVERCOMPLETE DATA REPRESENTATION

Let y(x), x ∈ X ⊂ Z1 be a signal deÞned on the
integer grid X = {x = 1, . . . , L}. We consider a
windowing C = {Xr , r = 1, . . . , Ns} of X with Ns
subsets (uniform windows) Xr ⊂ X of size nr such
that ∪Nsr=1Xr = X . Thus, each x ∈ X belongs to at
least one subset Xr . The subsets may be overlapping
and therefore some of the elements may belong to
more than one subset. The total number of the subsets
is Ns . Such windowing is called a covering of X .

Let Yr be an n-vector composed from the samples y j
of y which are deÞned on the r -th subset Xr . The
link between the windowed localized signal Yr and the
original L-vector y can be written in the form

Yr = Br y, (1)

where Br is a nr × L matrix. The matrix Br has the
nr × nr identity matrix in the columns corresponding
to location of the elements of the r -th window. All
other elements of Br are equal to zero.

Let Y be a
!
r nr -vector composed from all windowed

signals Yr . It is a structured vector of the form Y =
(Y T1 ,Y

T
2 ,...,Y

T
Ns )

T . The link between this composed
vector and the original signal-vector y can be given
as

Y = By, (2)
where B is a structured

!
r nr × L matrix, BT =

(BT1 , B
T
2 , ..., B

T
Ns )

T .

It can be realized that B is a full rank matrix,
rang(B) = L , and in this way the transform (2) is
invertible in the following way

y = B#Y, B# = (BT B)−1BT , (3)

where B# is the Moore-Penrose generalized inverse.
The matrix B can be called the windowing matrix,
which forms the windowed signals and overcomplete
data vector Y from the original data vector y. Analo-
gously, the matrix B# can be called the de-windowing
matrix, as it returns the original data vector y from
the structured vector Y of the windowed ones. The
formula (3) can be given in the equivalent form y =
(
!Ns
r=1 BTr Br )−1

!Ns
r=1 BTr y.

In the de-windowing matrix B#, the matrix BT moves
the elements of Y to the correct positions in the vector
y. However, because the vector Y is overcomplete, the
product BT y returns the sums of the elements which
are repeated at the same position. The diagonal ma-
trix BT B counts the number of these repetitions and
then the factor (BT B)−1 produces the corresponding
normalization of the vector BT y to the values cor-
responding to the vector y. Thus, the matrices BT
and (BT B)−1 in the pseudoinverse B# perform these
different operations which result in the perfect recon-
struction of y from Y .

Let us consider noisy observations

z(x) = y(x)+ σε(x), x ∈ X , (4)

where ε is i.i.d. zero mean Gaussian noise, ε(·) ∼
N (0, 1). The above data windowing deÞnes the noisy
data windows and overcomplete noisy data set Z as

Zr = Br z, Z = Bz, z = B#Z .
Applying the Br matrix to both sides of the equation
(4), we can see that Zr = Br y + σ Brε = Yr + σ · ε̃r ,
where ε̃r = Brε is a random vector of the size nr
and the elements of this vector are correlated with
correlation matrix Rr = E{ε̃r ε̃Tr } = Br BTr .
In a similar way, for the vector Z we have Z = By +
σ Bε = Y + σ · ε̃,where ε̃ = Bε is a random vector
of the size

!Ns
r=1 nr and the elements of this vector

are correlated with correlation matrix R̃ = E{ε̃ε̃T } =
BBT . This

!Ns
r=1 nr ×

!Ns
r=1 nr correlation matrix is

singular with rank(R̃) = L.



3. MATHEMATICAL FORMULATION FOR
ESTIMATION

3.1 Transform-domain sparsity and denoising

As a main tool for denoising we use transforms (or-
thonormal series) in conjunction with the concept of
the redundancy of natural signals. Mainly these are
the Fourier transform (FFT), DCT, polynomial and
wavelet transforms. The transform is calculated for
each window independently, with the spectrum-vector
deÞned as

θr = DrYr , r = 1, . . . , Ns, (5)

where θr is a nr -vector and Dr is a squared orthonor-
mal nr × nr transform matrix.
The sparsity of the signal means that it can be well ap-
proximated by a small number of non-zero elements of
the spectrum θr . The number of the non-zero elements
of the spectrum is interpreted as the complexity of the
model. Then, the complexity for the windowed data
modeling is the count of the non-zero elements in the
vector θr , denoted using the standard notation ||θr ||0.
We use the observations (4) in the window-wise form

Z = Y + σ ε̃, Y = DT θ , (6)

θT = (θT1 , . . . , θTNs )T and D = diag{D1, . . . , DNs }.
The goal is to estimate the signal y through the spec-
trum θ assuming the minimal complexity of the ap-
proximation model which, in particular, can be calcu-
lated as ||θ ||0 =!r ||θr ||0.

3.2 Maximum likelihood

For the Gaussian noise, the penalized minus log like-
lihood maximization gives the estimates as

θ̂ = argmin
θ

(Z − DT θ, R#(Z − DT θ)) 1
σ 2
+ (7)

+
"
r
pen(θr ),

Ŷ =DT θ̂ , ŷ = B#Ŷ . (8)

The penalty term pen(θ) used for characterization of
the model complexity appears naturally in this model-
ing, provided that the spectrum θr is random with the
prior density p(θr ) ∝ exp(−pen(θr )). The estimator
(7) can be presented in the following equivalent form

θ̂ = argmin 1
σ 2
||z − B#DT θ ||2 +

"
r
pen(θr ) (9)

Ŷ = DT θ̂ , ŷ = B#Ŷ .

The models (7)-(9) explicitly take into consideration
the noise correlation between windows. The simulta-
neous optimization of the all components of the spec-
trum θ is a complex problem and the advantage of
simplicity of the spectrum estimation for the separate
windows is lost here.

The modeling (7)-(9) makes clear the following point
which of importance for the overcomplete approach
overall. The solution for both θ and y essentially de-
pends on the used de-windowing matrix. The Moore-
Penrose inverse gives

ŷ = (
"
r
BTr Br )

−1"
r
BTr Ŷr ,

i.e. the Þnal estimate is the sample average of the
overlapping window-wise estimates. This is the stan-
dard fusing of the window-wise estimates, which is
used, e.g., in (Coifman and Donoho, 1995), (Hua and
Orchard, 2003), (Öktem et al., 1999), (Öktem et al.,
2001), and (Elad, 2006).

It is obvious that there is an inÞnite number of al-
ternative de-windowing matrices A different from the
Moore-Penrose inverse, to invert the windowing ma-
trix B and returning y from Y in the form of the linear
transform y = AY . Using different inverses, we ob-
tain different solutions. In this way, a proper selection
of A can be a powerful tool for modiÞcation and opti-
mization of the overcomplete estimation. In what fol-
lows, we demonstrate that the some randomization of
the matrix A leads to the algorithms optimal in least-
squares sense with the fused estimate calculated as the
weighted sum of the window-wise estimates. Under
some assumptions, the derived algorithms coincide
with the advanced algorithms discussed in Introduc-
tion. The high efÞciency of these algorithms explicitly
proves that the use of the de-windowing different from
the Moore-Penrose inverse is a good idea. As a com-
plimentary result, it demonstrates that provided con-
ditions used in the derivation of the algorithms in the
following sections, the discussed heuristic advanced
algorithms become the optimal ones in least-squares
sense.

4. RANDOMIZED DE-WINDOWING OF
OVERCOMPLETE DATA

As alternative to the reconstruction of y from the
windows Y given by the Moore-Penrose generalized
inverse (3), we introduce the following randomized
model. Let x ∈ X and Xr , r = 1, . . . , Ns , be a set of
windows such that x ∈ Xr . DeÞne a random window
X̃ as

X̃ =
#
r :αr=1

Xr , (10)

where αr are binary (zero-one) random variables
equal to 1 with probability pr ,

!
pr = 1. The vari-

ables αr are not independent, but random indicators
(selectors) such that only one of the variables αr takes
value 1 while all other are zero in any random real-
ization. The corresponding randomly windowed true
values of the signal is

Ỹ =
"
r
Yrαr .

Denote as Ỹ (x), Yr (x) the elements of Yr correspond-
ing to y(x), so that Ỹ (x) = Yr (x) = y(x), and assume



that y is random with the probability density f (y).
Then, the probability density f0(Ỹ ) for Ỹ has a form
of the mix distribution

f0(Ỹ ) =
"
r
fr (Yr )pr , (11)

where fr (Yr ) is a density for the windowed data Yr .
The similar representation is valid for the conditional
distribution

f0(Ỹ |z) =
"
r
fr (Yr |z)pr . (12)

Assume further that fr (Yr |z) = fr (Yr |Zr ). This hap-
pens if the components of the random vector y are
independent, f (y) = ) fs(ys). Note, that this assump-
tion means that only the random component of y are
independent while the conditional means (regressions)
can be smooth. The Þltering of these smooth functions
is the root of the considered estimation algorithms. It
follows from (12) that

f0(Ỹ |z) =
"
r
fr (Yr |Zr )pr . (13)

Let µr (x) be a window-wise least-squares estimate
of y(x) obtained from the observations Zr given in
r-th window, µr (x) = E{y(x)|Zr }, and µ(x) =
E{y(x)|z} be the least-squares estimate obtained from
all data z. Then,

µ(x) =
"
r
µr (x) · pr . (14)

Let us prove this statement. The conditional mean of
Ỹ is the least-squares estimate of Ỹ provided a Þxed z.
Calculations of the conditional means using (12) give

µỸ =
"
r
µYr · pr , (15)

whereµỸ = E{Ỹ |Z} =
$
Ỹ f0(Ỹ |z)dỸ and the partial

window-wise µỸr = E{Yr |Zr } are the estimates for
the windowed data. The formula (14) for the pointwise
estimates follows from (15), as µ(x) = µỸ (x) and
µr (x) = µYr (x).
The formula (14) deÞnes a decomposition of the least-
squares estimate of y(x) into the weighted sum of
the window-wise least-squares estimates. It is a fusing
formula for the window-wise estimates into the Þnal
estimate.

The parameters pr can be used for optimization of
this estimate. Assume that the window-wise estimates
µr (x) are unbiased. Then, because

!
pr = 1, the

estimate µ(x) is also unbiased. The variance of the
estimate µ(x) is calculated as

σ 2µ(x) = pT A(x)p, (16)
Akl(x) = cov{µYr (x), µYl (x)},

where cov{·} means the covariance of the estimates.
To minimize the mean squared error, we select the
parameters pr in (14) that minimize the variance of
the estimate:

p̂(x) = argmin{pT A(x)p| pT 1 = 1},

where 1 is a vector with all elements equal to 1. It
gives p̂(x) = A−1(x)1/(1T A−1(x)1). Here p̂ de-
pends on x and requires to track the correlations be-
tween the elements of different windows. In order
to simplify calculations, let us assume that the cor-
relation between windows can be neglected. Then,
cov{µYr (x), µYl (x)} = σ 2Yr (x)δr,l where σ 2Yr (x) is the
variance of the window-wise estimate. It follows that
the matrix A becomes diagonal and we arrive to the
simple formula for p̂, p̂r = σ−2Yr /

!
r σ

−2
Yr , with the

estimate of the signal given as the weighted average
with the weights equal to the inverse variance of the
estimates in the window:

µ(x) = µỸ =
!
r σ

−2
Yr µYr (x)!
r σ

−2
Yr

. (17)

4.1 Partial window-wise estimates

For calculation of the regression approximations for
the conditional meansµYr , the Bayesian formula gives
fr (Yr |Zr ) = fr (Zr |Yr ) fr (Yr )/ fr (Zr ), where fr (Yr )
is a prior density for Yr and fr (Zr |Yr ) is the condi-
tional density of Zr provided a Þxed Yr . Using the
parametric model (5) for Yr , Yr = DTr θr , and the
exponential prior for the parameters θr , we arrive to
the posterior density in the form

fr (Yr |Zr ) ∝ exp
%
−||Zr−Yr ||22σ 2 − pen(θr )

&
.

Inserting these fr (Yr |Zr ) into (13), the maximum
likelihood gives the estimates calculated indepen-
dently for each window:

θ̂r = argmin
θr

% ||Zr−DTr θr ||2
2σ 2 + pen(θr )

&
, (18)

Ŷr = D−1r θ̂r , yr (x) = Ŷr (x).
It is usually assumed that the penalty pen(θr ) is addi-
tive with respect to the components of the vector θr ,
pen(θr ) = !nr

i=1 pen(θr,i ). Then, the minimization
in (18) can be solved as the scalar optimization inde-
pendently for each θr,i :

θ̂r,i = argmin
θr,i

'
((Dr Zr )i−θr,i)2

2σ 2 + pen(θr,i )
(
, (19)

where (·)i is the i-th element of the vector. Depend-
ing on the penalty criterion pen(θr,i ), the problem
(19) deÞnes a different kind of Þltering procedures
going under the generic name thresholding. A number
of threshold operators derived from the optimization
problem (19) for different penalty functions can be
found in (Elad, 2006).

In this form, the derived algorithm coincides with the
procedure used in (Foi et al., 2006), (Foi et al., 2007a),
(Foi et al., 2007b). Thus, we show that, under the
proposed randomized inverse windowing (10), these
algorithms can be seen as optimal ones. It is clear from
the above formulas that in implementation we do not
need to imitate the random selection of the windows,



as the average over this randomness is calculated
explicitly with the Þnal estimation formula (17) where
the weights of the partial estimates are given.

5. GROUPING BYWINDOW-MATCHING

Let us consider again the windowing (covering) C =
{Xr , r = 1, . . . , Ns} from Section 2, further assuming
that all windows are equal upon translation. We also
assume that there is a similarity between some of the
vectors Yr , e.g., their elements take nearly identical or
close values, and that these vectors can be grouped ac-
cording to their closeness. For simplicity, the grouping
rule is deÞned by the .2 norm as

||Yr 0 − Yr ||2 ≤ /, r, r 0 = 1, . . . , Ns, / > 0. (20)
The aim of the grouping is a joint processing of the
windowed data in the group.

5.1 Reference-grouping (matching)

Similar to (Dabov et al., 2007), in the grouping we
consider a window to be as the �reference� window
XR , with reference data YR . The corresponding group
GR is a collection of the windowed data similar to this
reference one:

GR = {Yr : ||YR−Yr ||2 ≤ /, r = 1, . . . , Ns, / > 0}.
(21)

Let R take values from 1 to Ns , i.e. each of the
windows is treated as a reference one. The rule (21)
deÞnes the groups of the similar windowed data, for
each of the windows covering the grid X .

A link between this composed grouped windows and
the original signal-vector y can be given in the form
(2) with the generalized inverse similar to (3). Using
for B# the Moore-Penrose generalized inverse, we ob-
tain the reconstruction of the true y(x) as the sample
average of the windowed data estimates whose cor-
responding windows contain x , which estimates are
produced by Þltering different groups. We remark that
it is not necessary that x ∈ XR for GR to contribute to
the estimation of y (x), since there can be some other
r 2= R such that Yr ∈ GR and x ∈ Xr .
In what follows, we use the randomized modeling
resulting in the Þnal estimate that is the weighted
average of the multiple estimates obtained in different
groups.

5.2 Randomized de-grouping

The randomized de-grouping models the reconstruc-
tion of the original signal y(x) as a random proce-
dure where the window is randomly selected from all
windows containing x among the all groups in which
such a window can be found. Let us use the notation
Xr,k for the window Xr located in k-th group. In our

procedure we randomly select one of these groups and
randomly extract the corresponding window contain-
ing the point x .

DeÞne a random window X̃ as

X̃ =
#

r,k:αr,k=1
Xr,k =

#
r :αr,k=1

Xr ,

where αr,k are binary (zero-one) random variables
equal to 1 with probability pr,k , with

!
pr,k = 1. As

in Section 4, the variables αr,k are random indicators
such that only one of the variables αr,k takes value
1. The corresponding randomly windowed true values
and observations are

Ỹ =
"
r,k
Yr,kαr,k =

"
r,k
Yrαr,k ,

Z̃ =
"
r,k
Zr,kαr,k =

"
r,k
Zrαr,k .

It is clear that Ỹ (x) = y(x), i.e. this procedure
gives the perfect reconstruction of the true signal
from its grouped true values. Assuming that y is
a random variable, the probability density for the
randomly windowed data Ỹ has the form of the mix
distribution

f (Ỹ ) =
"
r,k
fr,k(Yr,k)pr,k, (22)

where fr,k(Yr,k) are the densities for the windowed
data Yr,k . A similar representation is valid for the
conditional distribution

f (Ỹ |z) =
"
r,k

fr,k(Yr,k |z)pr,k . (23)

Assuming, as it has been used in the proof of for-
mula (14), that fk(Yk |z) = fk(Yk |Zk), we Þnd that
f (Ỹ |z) =!r,k fr,k(Yr,k |Zr,k)pr,k and

µ(x) =
"
r,k
µr,k(x) · pr,k, (24)

whereµ(x) = µỸ (x),µỸ = E{Ỹ |z} =
$
Ỹ f (Ỹ |z)dỸ ,

µr,k(x) = µỸr,k (x), and µỸr,k = E{Yr,k |Zr,k}. The
formula (24) shows that the least-squares estimate is
calculated as a weighted sum of the least-squares es-
timates obtained for the point x in different windows
belonging to different groups.

5.3 Group-wise estimation

Using the parametric model (5) for Yr , Yr = DTr θr ,
and the exponential prior for the parameters θr , similar
to those introduced for the above window-wise esti-
mates, we arrive to the minus log posterior density

− log f (Yr |Zr ) ∝ ||Dr Zr − θr ||2
2σ 2

.

Let 1k = {θr }r∈Gk be a set of spectrums θr = Dr Zr
of the windows in the group k. Consider the elements
of 1k as a function of the index r and apply some



transform ϒ with respect to this index. This new
group-wise spectrum is 3k = ϒ(1k). Let the penalty
be deÞned as restrictions on the elements of the group
array3k . Then, the thresholding of3k and estimation
of 3̃k are deÞned as

3̂k = argmin
3

'
||3̃k−3||2F
2σ 2 + pen(3)

(
, (25)

1̂k = ϒ−1
%
3̂k
&
, Ŷr,k = D−1k θ̂r,k , yr,k(x) = Ŷr,k(x).

Here, || · ||F stays for the Frobenius matrix norm. If
the penalty pen(θk) is additive with respect to the
components of the matrix 3, the minimization in (25)
is scalar and independent for each element of 3. The
inverse transform returns the estimates of {θr }r∈Gk .
Because they are different in different groups, we use
the double indexes for the estimates θ̂r,k , Ŷr,k , yr,k(x).

5.4 Estimate fusing

Using (24) we obtain for the signal�s estimate

ŷ(x) =
"
r,k
ŷr,k(x) · pr,k, (26)

ŷr,k(x) = Yr,k(x).

This estimate can be optimized by selection of the ap-
propriate values for pr,k as it is in (17). The simpliÞed
version is to take these parameters to be equal for all
windows in the group, i.e. pr,k does not depend on r
and assumes that the group estimates are independent.
Then, p̂k = σ−21k /

!
r,k σ

−2
1k
, where σ 21k are the esti-

mate variances of the groups.

The derived algorithm consists of three successive
steps: grouping; spectrum Þltering with calculation of
the window-wise estimates ŷr,k(x); and fusing of these
estimates into the Þnal one, as it is done in (26). It
coincides with the block-matching collaborative Þl-
tering algorithm proposed in (Dabov et al., 2007). In
this way, we prove that this algorithm yields a close
approximation of the least-square optimal estimate,
provided that the image model can be given in the
form of the mix probability density (23).

6. CONCLUSION

In this paper we focus on de-windowing and de-
grouping of the overcomplete data as an important
element of formulation of the denoising problem,
because they inßuence both the estimates of the
spectrums and the fusing of the window-wise es-
timates into the Þnal one. We propose a random-
ized de-windowing that leads to a mix distribution
image modeling and the weighted-averaging of the
window-wise estimates. Simulation experiments pre-
sented in the papers (Foi et al., 2006), (Foi et al.,
2007a), (Foi et al., 2007b), and (Dabov et al., 2007)

prove that with this sort estimation composed with
the proper de-windowing and de-grouping is highly
efÞcient. In these cited papers one can Þnd full
details concerning these algorithms. The MATLAB
codes of the algorithms from (Foi et al., 2007a)
and (Dabov et al., 2007) are available from the
websites http://www.cs.tut.fi/~foi/SA-DCT and
http://www.cs.tut.fi/~foi/GCF-BM3D .
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