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Abstract—A singular linear-quadratic optimization problem  where®q(-), ®41(-,-), P2(-, ), ®3(-,-,+), P4(-) are symmet-
for a linear system of differential equations with aftereffect is  ric (excluding ®; and ®;) continuousn x n-dimensional
considered. The characteristic of the problem is that the optimal matrix functions,S is a symmetric nonnegative definite< n

control contains impulsive components concentrated on the tri ith tant el ts al the traiectori f th
boundaries of the control time interval. In contrast to [1], more MALTXWIth CONStant €iements aiong e trajectories or the

general form of the system that includes terms with distributed ~ System of differential equations

delay and more complicated functional is considered here. .

Regular linear-quadratic problems for systems with aftereffect i(t) = A()z(t) + A (t)z(t —7)
were investigated in [2]. Singular linear-quadratic problem

without aftereffect was considered in [3], [4]. 0
|. INTRODUCTION +/G(tﬂ)ﬂ?(t+9)d9+3(t)0(t) 2
Singular linear-quadratic optimization problems are of -7

great practical importance [5]. Models of such structure dewith initial condition

scribe physical problems in space flight dynamics, robotics,

electrophysics etc. That concerns systems with aftereffect as (t) = (1), to—7 <t <1,

well. It is shown in [3], [4] that in case without aftereffect yhich will be called the problent. Here,z(t), ¢(t) aren-

such problems have no solutions in a class of ordinaryimensional vector functionsu(t) is am-dimensional vector

controls and it is necessary to extend the set of admissiignction, 4. (t), A(t), G(t,0) are continuous: x n matrix

controls allowing impulsive controls for providing the exis-fynctions,B(t) is a continuously differentiable x m matrix

tence of solution. It should be mentioned that for practicaynction.

problems, the singularity of a functional is often met [5] and, sjnce the probleml have no solution in a class of

therefore, the investigation of such problems is actual.  apsolutely continuous functions, it is necessary to extend
ll. STATEMENT OF THE PROBLEM AND ITS REDUCTION  the problem by introducing impulsive controls. Lett)

A. Statement of the problem anq, therefore;c(t) are fungtlor_ls o_f bounde.d variation W|th_

derivatives regarded as distributional derivatives [6]. It is

Consider the problem of minimizing the functional reasonable to suppose that) is also a function of bounded
T variation. Further, for distinctness we assume that the func-
Jw()] = 2T(T)Sz(T) —|—/{:L'T(t)<1>0(t)x(t) tions z(t) and v(t) are continuous from the left on the
interval (o, T) andv(ty) = 0.

t : . . .
’ In this case under a solution of the equation (2) we imply

9 a solution of the corresponding integral equation

0
+J:T(t)/<I>1(t,9)x(t+9)d9+/xT(t+0)<I>1T(t,9)d0x(t) . ,
- - x(t) = ¢(to) +/A(s)x(s)ds—|—/AT(s)m(s—T)ds

T (t 4 8)®y(t, 8)2(t + s)ds+ .

0

/ ;0

—:J +‘/ / G(s,@)x(s+9)d9d8+/B(S)dv(s)
/

2T (t+ 0)®s5(t, 0, p)(t + p)dbdp e o
with Riemann-Stieltjes integrals.

B. Reduction of the problem to a regular one

T
+at (= 1)@ (t)a(t —7)| dt, @) Transforming the probleri by a change of variables
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+(A(t)B(t) - B(t))v(t) + A ()B(t— )t — )
0

+/G(t791)3(t+91)v(t+01)d91 (4)

—T

with initial conditions

y(t) = ¢(t), o(t) =0,

and the functional (1) takes the form
T

T ()] = (W) + BEO)(T)) S(y(T) + BT)(T))

to — 7 <t <o, 5)

T
[0+ Bw0) 000 (o0 + B0(0)

to

o)+ Bpww)

0
< / @1(1,6) (y(t +6) + Bt + 0ol +6)) do
0

+/(y(t+9) FB(E+ 0t +0)) o (1.0)d6

0

x (y(t) + B(t)v(t)) + /(y(t + )+ Bt + s)o(t + s))T

—T

X Py (1, s) (y(t +5)+ B(t+ s)v(t + s))ds
0

0
+//(y(t+0)+B(t+0)v(t+0))T

—T —T

x®y(t, 0, ) (y(t + p) + Bt + p)o(t + p) ) dbdp
T
+(y(t —7)+ Bt —1)v(t — 7'))

x By (t) (y(t — )+ Bt —)o(t — T))] dt.  (6)
If the terminal part in the functional (6) depends ofY")

(i.e. whenSB(T) # 0), it is possible to minimize it with
respect tov(7T). Since the matrixS is nonnegative definite,

+(E - (BT(@)sB(T)) BYT)SBT))p, (1)

where U~ is the semiinverse matrix for a matrid, p is
an arbitrarym-dimensional vector. Note i/ is a quadratic
matrix with det U # 0, thenU~ = U~ 1.

Substituting (7) into the functional (6) and taking into
account that by definition of semiinverse matrix

(BT(T)SB(T))
x (E - (BT(T)SB(T))iBT(T)SB(T)) =0,
we obtain the following functional to be minimized

T [w()] = y(T)" Ny(T)+

4 / (w0 + BOw®) 0o6)(410) + BOW))
o0+ o)’

0
« / @1 (1,0) (y(t +0) + Bt + 0)o(t +0))do
0

+/(y(t+0) +B(t+0)v(t+9))T<I>{(t,9)d9

0

(0 + Blew) + [ (ule+5)+ Ble+ s +9)

X By (L, ) (y(t +8)+ Bt + s)o(t + s))ds

0

0
—|—//(y(t+0)+B(t+0)v(t+0))T

—T —T

31,0, p) (y(t +p)+ Bt + po(t + p))dedp
T
—l—(y(t —7)+ Bt —7)v(t — 7'))

X By (t) (y(t — )+ Bt —)o(t — T))] dt, (8

the terminal part reaches it's minimal value at points of avhere

manifold described by the system of equations
B(T)S|B(T)o(T) + y(T)| = 0.

For the case détBT(T)SB(T))
the solution of the form

# 0 the last system has

N = (E ~ B(T) (BT(T)SB(T))_BT(T)S>TS

X (E ~ B(T) (BT(T)SB(T)> _BT(T)S).

Further, the optimization problem of minimizing the func-

tional (8) along the trajectories of system (4), (5) is called the
problem?2 . The distinguishing feature of the proble2nis
that the controby(¢) is a function of bounded variation here
If det(BT(T)SB(T)) = 0, to solve the system one can useand, therefore, the trajectogyt) is an absolutely continuous
the technique of semiinverse matrices [7] and obtain function. Thus, we have obtained the auxiliary problem
which is the regular problem that can be solved using well
known methods of optimal control theory.

o(T) = —(BT(T)SB(T)>_1BT(T)Sy(T).

o(T) = — (BT(T)SB(T)) BT (T)Sy(T)



[1l. SOLUTION OF THE AUXILIARY PROBLEM +®3(t,0,p) = FL(t,0)H(t) "' Fy(t, p),
Theorem 1:Let for ¢ € [to,T] the following conditions (8 9

hold 5 891)P1(t 01) + Pa(t,0,01) + AT (1) Py(t, 61)
1) det (BT(t)fbo(t)B(t) + Py(t, 0)) £0,
2) the matrix +P(t)G(t,601)B(t + 01) + P1(t,01)B(t + 601)
( 1do(t)  @1(t,0) ) = Fy ()H (1) Fa(t,61),
(I){ (t’ 9) @2 (tv 0)
is nonnegative definite fof € [—, 0], (i 00 391> (t,0,01) + QT (t,0)G(t,0:1)B(t + 61)

3) the matrix®5(t, 6, p) has of the structure

N N +GT(t O)Py(t,0,) + ®3(t,0,0,)B(t + 0y)
(I)S(ta 07p) = (I>3(t70) (I)3(t7p)7

) ) ) o = FL(t,0)H ' (t)Fa(t,0,),
4) the matrix®,(t) is nonnegative definite.
Then the optimal control for the problethhas the form ( 9 0 9 )Pg(t 01.0,)

ot 06, 06,

v +BT (t+6:)GT (t,01) Py (t, 02)+ P (t,61)G(t, 02) B(t +62)

o)) = Walthylt)+ [ Walt. (e +0)a

-7

+BT(t 4 0,)®3(t,01,60:)B(t + 6)
0

= FJ (t,00)H ™' (t)Fa(t, 02),
+/W2(t,01>v<t+91>d91. ©) (0 D)o
Here o 6547 T
Walt) = —H™'(t) Fut) (5 = g ) Polton) + @a(t. B +5) =0
Wi (t,0) = —H(t) Fi(t,0),
Walt,00) — —H-1(0) Fa(t. 62, (% _ %)PG(t,r) b BT (t 4 1)®o(t, 1) B(t+1) = 0 (10)
where

with the boundary conditions
Fo(t) = P{ (t,0) + By (t)P(t) + P5(t,0) + B (t)®o(t),

Fi(t,0) = B ()Q(t,0) + PL(t,60,0) + BT (1)®,(t,0),
Fy(t,6,) = BL(t)Pi(t,6,) + P (t,0:,0)
+BT ()@, (t,0,)B(t + 6,),

H(t) = BT (t)®o(t ) (t )+P6(t,0)
B(t)

P(T)=N, QT,0)=R(T,0,p)=P(T,0,) =
= Py(T,0,6,) = P3(T,01,05) = Py(T, s)
= P5(T,p) = Fs(T,r) =0,
P() ()B(t—7)= Pl(t —7),

and the matrices AT(P() = Q" (¢, —7),

P(t), Pa(t,s) = PT(t, s), Ps(t,r), Pi(t,01), R(t,0,p)  Ar QL O)+QT (£,0)A-(t) = RT(t,0, —7)+ R(t, —.,0),

= RT(t,p,0), Py(t,0,01), Ps(t,p), Q(t,0), Ps(t,01,0) AT (t)Py(t,01) = Py(t,—7,61),

= PJ(t,05,0,) BT (t — )AL (t)Pi(t,61) + PL(t,00) A (t)B(t — 1)
satisfy the equations = PT(t,0,,—7) + Ps(t, —7,01),

dl;i ) +Q(t,0) + Q7 (t,0) + PT (1) A(t) + AT (t)P(1) Dy(t) = Py(t, —7),

+Py(t,0) 4+ By (t) = FL () H 1 (t) Fo(t), Dy(t)B(t — 1) = P5(t, —7),

(% - %)Q(t, 0) + R(t,0,0)+ P(t)G(t,0)+ AT (t)Q(t, 0) BY(t=7)24(t) B(t = ) = Po(t, =),

fort <T, —7<6,01,05,p,p,7,5 <0.
Proof: The conditions (2)—(4) guarantee nonnegative
definiteness of the functional (8). The validity of the theorem
T T
ot 80 dp ) (t,0,p)+G (£, 0)Q(t, p)+Q7 (1, 0)G(t,p) s easy to establish using the technique from [2].  m

®,(1,0) = B () H (t)F1(t.6),



IV. OPTIMAL CONTROL FOR THE INITIAL PROBLEM

The optimal program control for the initial problem is
determined by differentiating the control (9) in distribution
sense [8].

Since the value of the functiar(t) equal to zero fot < ¢,
and defined by formula (7) fot > T, the distributional
derivative of this function has the form

o(t) = Av(to, ¢(+)) 6(t — to) + 0r ()

+AW(T, 2(T — 0)) §(t — T). 11)

n / [Mx(t +0) + Wi(t,0)i(t + 0)

0

dg = 0.
ot 0

-7

From this by (14) we can derive the following formula for
0,(t) which is defined or(ty, T')

Op(t) = Z1()x(t) + Zo(t)x(t — 7)

0

+ / Zs(t, &)x(t + &) dE.

—T

(15)

Here

Here, v,.(t) is the regular part of the generalized optimal

controlv(t). l.e. the optimal prograni(t) for the probleml Zu() = dWo(t) £ Wo(t)A(t) + Wi (t,0),
generates impulses only at the initial and the terminal points dt
of the control time interval and is a summable function in Zs(t) = Wo(t) A, (t) — Wh(t, —7),
the interior of this interval. o o

Taking into account (3), we have Z3(t,0) = G(t,0) + (5 — %>Wl(t, 6).

0
o(t) = Wa(®)(a(t) = Bo)w(t)) + [ Wa(t.)alt + 60

0
+/[Wg(t,Ql)—Wl(t,ﬁl)B(t—i—6‘1)}0(t+91)d91. (12)

—T

From (5) follows that the equation (12) for= ¢, will take
the form

0
Wo(t())m(to) + /W1(t0,9)1‘(t0 +6)do =0.

—T

According to the principle of optimality the latter equality

remains valid for any € (to,7") and becomes

0
Wo(t)z(t) + / Wi(t,0)z(t+0)do =0.  (13)

Hence, for[ty, T, the optimal control according to (11)
and (15) takes the form

o(t) = Av(to, () 6(t — to) + Z1(t)x(t) + Zo(t)x(t — 7)
0
+ / Zs(t,0)x(t + 0) df + Av(T, x(T — 0)) 6(t — T).

—T

By (12), (7) and (3) the first and the last terms in the
righthand side of the latter are determined by the formulas

0
Ao(to, () = Wo(to)e(to) + / Wi (to, ) (to + 0) b,

Av(T,z(T — 0)) = f(BT(T)SB(T)> BT(T)Sz(T - 0)

+(E - (BT(M)SB(T)) B"(T)SB(T))p.

Remark.If the structure of the matriceB, (¢,6;),

The equation (13) describes the functional manifold in @5(t,0,01), Ps(t,01,05), Ps(t,p), Ps(t,r)is putin a spe-
space of functions of bounded variatiar(t) defined on cific form, it is possible to simplify the system (10).

[t — 7,t], which contain the optimal trajectory fot €

(to, T). Taking into account (12), (13) and the independence
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