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A brief account of quantum theory of optimal control and �ltering is given. The
dynamical programming method for optimization of quantum control with con-
vex constraints and concave cost functions of quantum conditional state is pre-
sented. Consideration is given to open loop control corresponding to deterministic
conditionally-Markov dynamics of a quantum unstable system. The results are
demonstrated on the example of quantum unstable controlled dynamics admitting
continuous demolition measurement. A single controlled decaying qubit condi-
tioned by its survival is considered as an example.
Keywords: Quantum Optimal Control, Quantum Nonlinear Filtering, Quantum
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1. Introduction

Quantum Cybernetics (QC) will be dealing with self-organizing nanome-
chanical, nanoelectrical or nanobiological systems described by quantum
laws of physics, probability and information. Like the classical cybernetics
is essentially the systems theory of classical bits with input controls, output
observations and feedback in the description of Norbert Wiener, QC can
be de�ned as quantum systems theory of open to observation and feedback
control qubit systems. However, unlike in the classical case, quantum ob-
served systems must decohere and may become even unstable under the
demolition measurements. The aim of QC is therefore the dynamical op-
timization of quantum observation and feedback control on the purpose
described by costs and bequest functionals of quantum states during the
quantum information processing. The main ingredients of such theory is the
theory of optimal quantum �ltering and quantum feedback control theory
based on the quantum stochastic innovation dynamics which was developed
by the author since 1 in a serious cited in the review paper 2.
Here we give a brief account of this theory on an example of a decaying

qubit under the continuous watching of the decreasing event of its survival.
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Such systems can be described as sub-Markov quantum processes governed
by a class of nonlinear nonstochastic master equation speci�ed in this paper.

2. Some facts and notations

Let A = B (h) be the operator algebra on a Hilbert space h. The predual
space A? can be realized by the densities % 2 A, trj%j <1 with respect to
the trace tr such that the linear functional � (A) = tr [%A] � h%; Ai describes
a quantum state de�ning the expectations of all A 2 A by a Hermitian-
positive trace-one operator %.
Let S � A? denote the state space realized by such % � 0, h%; Ii = 1 with

the tangent space T0 =
�
� = �y 2 A? : h�; Ii = 0

	
and the cotangent space

T ?0 = �Ah=RI. Every state % 2 S can be parametrized as % (q) = %0 � q by
a tangent element q 2 T0. Cotangent elements p 2 T ?0 are the equivalence
classes

p (X) = fA 2 A : A = X+ �I, for some � 2 Rg :

Example: A single quantum bit is described by the algebra of (2� 2)-
matrices A = �I+ �~p, where �~p 2 T0 is decomposed into Pauli matrices

�~a = ax�x + ay�y + az�z � ~a � ~�; ~a 2 C3:

The normalized trace hI; Ai = tr fAg = � de�nes the standard pairing
h%; Xi = �~q � ~p of X = �~p with quantum bit states % = 1 � �~q given by the
coordinate q = �~q parametrized by real vector ~q 2 R3 from the unit ball
j~qj � 1 with respect to the central state %0 = I and ~p (X) 2 R3 identi�ed
with p (X) 3 X such that hq; pi = ~q � ~p .

2.1. A¢ ne and concave costs

An a¢ ne functional G (u; %) = h%;G (u)i of % 2 S given by a function
u 7! G (u) in Hermitian operators G (u) ` A on a measurable space U
is called expected cost of the control u 2 U . The minimal expected cost
S [%] = inf fh%;G (u)i : u 2 Ug is not a¢ ne but concave functional into R^ =
[�1;1[ on the convex set S in the sense

S [�%0 + (1� �) %1] � �S [%0] + (1� �)S [%1]

for any � 2 [0; 1] and %0; %1 2 S. It can have value �1 for an unbounded
from below function G (u) and is continuous in the lower topology on R^.
Such lower continuous concave function will be called proper concave if
S [%] > �1 at least for one %.
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Example: S [%] = inf~u2R3 f h%; �~ui+ j~ujg = O�B1 (~q), where O
�
B1 (~q) :=

f0; ~q2B1�1; ~q=2B1� �O+B1 (~q) is the max-plus indicator function of for the ball
B1 =

�
~q 2 R3 : j~qj � 1

	
.

2.2. Legendre-Fenchel transform

The above example for an a¢ ne G corresponding to G (u) = j~uj I+ �~u is a
special case of the Legendre-Fenchel transform

S [%] = inf
p2T ?

0

fg (p)� hq (%) ; pig = inf
X=Xy

fh%; Xi+ G [X]g

of the proper convex function g (p) = j~pj for X = �~p � �I with G [X] =
g (p) + �. Every proper concave functional S [%] on S can be obtained as
optimization infu2U fG (u; %)g of a proper a¢ ne function % 7! G (u; %), e.g.
as the LF transform corresponding to u = p and

G (p (X) ; %) = G [X] + h%; Xi = g (p (X))� hq (%) ; p (X)i :

The functional G, uniquely de�ning g (p) = G (p; %0) on T ?0 by the prop-
erty G [X] = G [X+ �I] � �, can be found as a proper convex functional on
the representatives X of p (X) into R_ =] � 1;1] by the inverse Legen-
dre transform G [X] = sup fh%; Xi+ S [%]g of the functional S [%] extended as
�1 outside of S. Thus, the relative entropies S [% : �] = �tr

n
% ln %

�

o
of

(a) ln %
� = ln %� ln� and (b) ln

%
� = ln

�
��1%

�
types are the transforms of

some proper convex functionals Ga and Gb, and the thermodynamic relative
entropy is de�ned as the transform

St [% : �] = inf
�
h%; Xi+ ln



�; e�X

�
: X = Xy

	
:

3. Quantum sub-Markov dynamics

In general quantum controlled systems are governed by sub-Markov dy-
namics described for each controlling process y = [u (r) jr 2 R+] in terms
of a hemigroup [�yr (t) jt > r 2 R+] of normal completely positive contract-
ing maps �yr (t) : A! A such that

�yr (t) � �
y
t (s) = �

y
r (s) 8r < t < s:

The dependence on y is assumed to be causal, �y1r (t) = �y2r (t) whenever
yt1 = [u (r) jr < t] = yt2, and usually �

y
t (s) are assumed to be independent

also on the past yt of the admissible controls y de�ned by the cadlag trajec-
tories u (t) = u (t+) as right continuous in Rnt having the left limits u (t�)
at each t.
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3.1. Quantum controlled generator

The continuous feedback controlled sub-Markov dynamics
f�yr (t) jt > r 2 R+g is usually determined by its generator

L (u (t) ; X) = lim
s&0

1

s
(�yt (t+ s; X)� X)

given by a completely dissipative map L (u) : A!A controlled by the values
u (t) =

�
u1; : : : ; un

�
of some parameters uj 2 R. Such dynamics is described

by the controlled semi-Lindblad generators L (u; X) = i [H (u) ; X]+Lm (u; X)
with the dissipation part

Lm (X) =
X
j

LjXL
y
j �

1

2
(MX+ XM) ; M �

X
j

LjL
y
j

prepared for a continuous indirect measurement, say, of the observables
Lj+L

y
j a¢ liated to A. Here we assumed that the dynamics is controlled only

by the Hamiltonian H (u) = H (u)y and M ` A (a¢ liated to A) determines
the decay operator D = M�

P
j LjL

y
j = �L (I).

3.2. Deterministic quantum Master equations

The density operator %t 2 A? of a quantum state evolves from a normalized
%0 = %0 by resolving the controlled Master equation

d
dt%

t = L? (u; %
t) with

the predual generator hL? (%) ; Ai = h%;L (A)i. It is normalized on the de-
caying probability of the survival �t = h%t; Ii. The renormalized %t = %t=�t
describes the quantum state conditioned by the survival e¤ect up to time
t. Its evolution is described by the velocity � (%) = d

dtq (%) 2 T0 de�ning
the deterministic nonlinear �ltering equation

d

dt
%t = L? (%t)� h%t;L (I)i %t � �� (%t) :

Example: An unstable quantum bit is described by the Hamiltonian
H (~u) = 1

2�~u, L =
1
2��z = Ly, M = �I + � ~m with � � j~mj + �2=4. Then

� (%) = �~u�~q + �m (%) where

�m (%) =

�
~m� �

2

2
~q?z � (~m � ~q) ~q

�
� ~� � ~vm � ~�:

4. Quantum dynamical programming

The cost to go of a control u (t) conditioned by survival is

J [fu (�)g ; t; %t] =
Z �

t

C (u (r) ; %r) dr + G (u (�) ; %� ) :
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Due to the statistical interpretation of quantum states,

C (u; %) = h%;C (u)i ; G (u; %) = h%;G (u)i :
The optimal average cost on the interval (t; � ] to be S (t; %) :=

inffu(r)g [J [u (�) ; t; %]] with S (� ; %) = inf fh%;G (u)i : u 2 Rn� g � S [%] given
by any concave functional S : % 7! S [%] 2 R^ of the terminal state % = %� .

4.1. Quantum Hamilton-Jacobi equation

Since J [fu (�)g ; t; %t] =
R t0
t
C (u (r) ; %r) dr + J [fug ; t0; %t] at the times t <

t0 � � , one has

S (t; %) = inf
fug

(Z t0

t

C (u (r) ; %r) dr + J [u (�) ; t0; %t0 ]
)
:

Suppose that fuo (r; %) : r > tg is an optimal control when starting in state
% at the time t, and denote by f%r : r 2 (t; � ]g the corresponding state
trajectory starting at a state % at t. Bellman�s optimality principle observes
that

� @
@t
S (t; %) = inf

u2U
fC (u; %)� h� (u; %) ;r%S (t; %)ig ;

The equation is then to be solved subject to

S (� ; %) = G (uo (�+; %) ; %) � S [%] :

4.2. Pontryagin�s maximum principle

We may rewrite this as the Hamilton-Jacobi equation

� @
@t
S (t; % (q)) + H� (q; p (r%S (t; %)) (q)) = 0

introducing the Pontryagin�s Hamiltonian as the transform

H� (q; p) = sup
u2U

fh� (u) ; pi � C (u)g (q)

which is a¢ ne in p 2 T ?0 . This leads to the Hamiltonian boundary value
problem �

_qt �rpH� (qt; pt) = 0; q0 = a
_pt +rqH� (qt; pt) = 0; p� = b

as the Hamilton-Pontryagin problem with the solutions de�ning for a =
%0 � %0, b = r%S [%] the minimal costs by the path integral in

S (t0; %0) =

Z �

t0

[h_qt; pti � H (qt; pt)] dr + S [% (q� )] :
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4.3. Optimal qubit decay control

Let L0 be L = �
2�z = L

y (� = �), and let us ignore the e¤ect of environment
by taking Lj = 0 for j 6= 0. We may also take cost c (~u) = O+B1 (~u) of con-
straint B1 = f~u : j~uj � 1g and any concave bequest functions S [%], the qubit
entropy say, as conditional entropy of the survival S [%� ] =

1
�� S [%

� : 2��I]:

S [I+ �~q] = q ln

r
1� q
1 + q

� ln
r
1� q2
4

; q = j~qj :

We have h� (u; %) ; pi = ~v (~u; ~q) � ~p linear in ~u:

~v (~u; ~q) = ~vm + ~u� ~q; ~vm = ~m� (~m � ~q) ~q � �
2

2
~q?z

which is maximized by the unit ~uo = ~q � ~p= j~q � ~pj under the constraint
j~uj � 1. This leads to the Hamiltonian function

H� (~p; ~q) = j~q � ~p j+ ~vm � ~p:
The HJ equation for optimal qubit control under this constraint is

�@S
@t
+
���~p� ~rS���+ �~m� (~m � ~r)~r + �2

2
~r?z

�
~rS = 0:

The solution S (t0; %0) of this backward evolution equation corresponding
to the entropy S (� ; %� ) = S [%� ] gives the minimal entropic cost of the
controlled unstable qubit under the condition of its survival up to a time
� � t0.

5. Discussion

Our analysis is based on the fact that quantum state is a su¢ cient coor-
dinate not only for closed, but also for open unstable quantum systems
under the Markov approximation. However we have to deal with di¤eren-
tial equation of high or in�nite dimensionality if dim h =1. Nevertheless,
the Bellman principle can then be applied in much the same spirit as for
classical states and we are able to derive the corresponding HJB theory for
a wider class of cost functionals than traditionally considered.
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