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Abstract
In this paper Adams-Bashforth approximations were
employed for sampled-data modeling of a large class
of vehicle dynamics in many degrees of freedom. The
problem of path tracking and regulation with geomet-
ric and kinematic specifications on the reference paths
was focused afterwards. An approach to model-based
controller design was presented based on a Lyapunov
method over an incremental functional of the path er-
ror energies. Asymptotic convergence for small sam-
pling periods into a residual set with a measure depend-
ing only on the one-step-ahead sampled-data model er-
rors was proved. Guidelines to select design matrices
for independently tuning of the kinematic and geomet-
ric path tracking are provided. A case study for a 6
degrees-of-freedom vehicle illustrates the features of
the proposed digital control system.
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1 Introduction
Although most research in control of nonlinear sys-
tems is devoted to systems in continuous time, the in-
terest in the theory of discrete time models has been in-
creasingly growing since most control applications are
implemented digitally using sample and hold devices.
Physical models for the deterministic continuous-time
nonlinear vehicle dynamics are typically available in
the form of ordinary differential equations (ODEs),
with eventually time-varying parameters. Translation
of ODE-based descriptions to time-discrete models is
an ineludible problem when applying digital technol-
ogy to control system design. In the design of guidance
systems for unmanned vehicles, most investigation is
focused to continuous time controllers with a digital-
ization using the approximation of the time derivative
according to the simplest numeric approach, the Euler’s
method [Cunha, Costa and Hsu, 1995; Smallwood and

Whitcomb, 2003]. This generally provides a good con-
trol performance if motions are rather slow.
Improved technology in propulsion systems and ambi-
tious requirements of accuracy on operations, make ve-
hicles potentially more manoeuvrable and versatile so
that the path tracking problem will impose more rapid
changes of the variable involved. With this scenario in
mind, it is conjectured here that more accurate and sim-
ple sampled-data models for control purposes of a com-
plex nonlinear dynamics of the vehicle would have to
be considered for achieving high control performance
with feasible implementation in real time.
Many theoretical efforts are being focused to define
sampled-data models for a broad class of nonlinear sys-
tems, see for instance [Albertos, 1996; Nĕsic, Teel and
Sontag, 1999; Yuz and Goodwin, 2005]. Really, it is
not possible to analytically describe the exact discrete-
time model of the plant and so, in such situation, an
approximate discrete-time model is the only alternative
to use for controller design. Although a controller that
stabilizes an approximate discrete-time system model
for all small sampling periods is demanded, it could
destabilize the exact discrete-time system model for all
this small sampling periods [Nĕsic and Teel, 2004].
Traditional numeric methods arriving from simulation
fields such as the Adams-Bashforth or Runge-Kutta
methods [Hairer, Nørsett and Wanner, 1987], could be
translated to one-step-ahead predictor for approximat-
ing exact discrete-time system model. The fact that lo-
cal errors are always bounded if the ordinary differen-
tial equation is Lipschitz, even if the global error may
be unbounded, make this approach very attractive for
controller design purposes. Besides, a-priori seen, no
significant restriction to the controller structure is re-
quired as for instance the demand of affine equations or
polynomial structures. On the other side, they are very
suitable in cases in which a physical ordinary differ-
ential equation of the system is available for controller
design.
An open question to be explored yet is the adequacy



of numeric methods to complex dynamics in order for
specific nonlinear controller design methods in the con-
tinuous time to be translated directly into the discrete-
time domain with slight modifications. Besides, the
roles played by the order of the approach and fast sam-
pling rates on the model accuracy and stability of com-
plex dynamics remain also open.
In this paper, the outstanding features of numeric
methods will be exploited for modeling a large class
of unmanned vehicles dynamics up to six degrees of
freedom with model uncertainties. Specially the or-
der of the approach and the sampling time will be in-
vestigated with focus on the behavior accuracy and till
the stability implications in the path tracking problem.
Some valuable guidelines are established for the em-
ployment of numeric methods with controller design
purposes. Simulation results are presented to illustrate
the features of the control approach developed.

2 Vehicle Dynamics
Many systems are described as the conjugation of
two ODEs in generalized variables, namely one for
the kinematics and the other one for the inertia. The
block structure embraces a wide range of vehicle sys-
tems like mobile robots (MRs), unmanned aerial vehi-
cles (UAVs), spacecraft and satellite systems (SSSs),
autonomous underwater vehicles (AUVs) or remotely
operated vehicles (ROVs), though with slight distinc-
tive modifications in the structure among them.
Particularly, for underwater vehicles in six degrees of
freedom (DOF) with cable connection to a mother ship
(i.e., for ROVs), the degree of interconnection among
states is complex and involved, with accentuated influ-
ence of state-dependent Coriolis and centripetal, drag
and cable forces. So we can say that the results devel-
oped here for the most complex case also will compre-
hend the more simple cases.
Let η = [x, y, z, ϕ, θ, ψ]T be the generalized position
vector referred on an earth-fixed coordinate system
termed O0, with displacements x, y, z, and rotation an-
gles ϕ, θ, ψ about these directions, respectively. Ad-
ditionally let v = [u, v, w, p, q, r]T be the generalized
rate vector referred on a vehicle-fixed coordinate sys-
tem termed O, oriented according to its main axes with
translation rates u, v, w and angular rates p, q, r about
these directions, respectively. The vector τ is the gen-
eralized propulsion vector applied onO (also the future
control action of a controller), τ c is a force perturba-
tion applied on O (for instance the cable tug in ROVs),
ηc is a perturbation of the position with respect to O
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,

and finally vc is a velocity perturbation with respect
to O (for instance the fluid current in ROVs/AUVs or
wind rate in UAVs).
The vehicle dynamics can be described by [Fossen,
1994]
.
v =M−1

³
−C(v)v−D(|v|)v+g(η)+ τ c+ τ

´
(1)

.
η = J (η)(v+vc), (2)

where M , C and D are the inertia, the Coriolis-
centripetal and the drag matrices, respectively, g is the
buoyancy vector and J is the rotation matrix express-
ing the transformation from the inertial frame to the
vehicle-fixed frame. Finally, there may exist some per-
turbation τ c in the inertial system handled as an ex-
tra generalized force applied on O, for instance due to
wind as in case of UAVs, fluid flow in AUVs, or cable
tugs in ROVs.
As usually done, we will assume the thruster dynam-
ics is parasitic when compared with the dominant vehi-
cle dynamics. Besides, perturbations of the current and
cable as in case of subaquatic vehicles are not consid-
ered here in the analysis, because their influences in the
dynamics are quite similar to them of the model uncer-
tainties considered in this work.

3 Discretization Method
The presence of zero-order holder in discrete control
systems generally implies a delay of about one sam-
pling period h at least, of the state/output with respect
to the input. Thus, appropriate sampled-data models to
control purposes require the ability to predict the actual
state on the basis of samples related to past states and
inputs. In other words, appropriate discretization meth-
ods are described by explicit algorithms in a nonau-
tonomous form.
Let us investigate one important class of nu-
meric method known as Adams-Bashforth approach
[Butcher, 2003]. With the goal of implementing on-
line control algorithms upon the sampled-data model
we have to consider the particular explicit form and not
the usually more accurate implicit form of the Adams-
Bashforth. Moreover, in comparison with the Runge-
Kutta methods, Adams-Bashforth methods do not use
intersampling which make it adequate for control and
identification purposes.
Generally speaking, series-based approximations of
order p attempt to bring the local error to be

xtn+1−xn+1=εn+1 ∈ O(hp+1), (3)

where xtn+1 is the sample at discrete time tn+1 of the
state vector of a system ẋ = F(x,u) with F Lipschitz
and u the system input. The samples xtn+1 of the sys-
tem are referred to as the exact sampled-data model of
the system, often an inexistent one in terms of model
structure. On the other side, xn+1 is a prediction of
the sampled-data model, εn+1 the prediction error and
O is the order function expressing that the local error
is of an order of magnitude equal to a desired order of
accuracy p with h the sampling period. Here, there is
supposed the structure of the ODE in F is known be-
forehand and the samples xtn+1 are noiseless.
Particularly the Adams-Bashforth method is an ex-
plicit multistep linear method that performs an approx-
imation of xt with initial value xt0 at t = tn+1 =
t0 + (n + 1)h with n = 0, 1, 2, ... based on a linear
combination of samples F(xti ,uti ) from i = n up to
i = n− s+1, with s the so-called order of the approx-
imation.



The coefficients of the linear combination are obtained
by using the Lagrange formula for polynomial interpo-
lation, which is locally a good approximation of the
right-hand side of the differential equation that is to be
solved. Accordingly, one achieves for different orders
s the one-step-ahead prediction xn+1
s=1: xn+1=xn+hF(xn ,un) (4)

s=2: xn+1=xn+
3h

2
F(xn ,un)−h

2
F(xn-1 ,un-1 ) (5)

s=3: xn+1=xn+
23h

12
F(xn ,un)−4h

3
F(xn-1 ,un-1 )+

+
5h

12
F(xn-2 ,un-2 ) (6)

s=4: xn+1=xn+
55h

24
F(xn ,un)−59h

24
F(xn-1 ,un-1 )+

+
37h

24
F(xn-2 ,un-2 )−9h

24
F(xn-3 ,un-3 ). (7)

For explicit Adams-Bashforth methods, the order of
accuracy is equal to s, i.e., xtn+1 − xn+1=εn+1 ∈
O(hs).
Clearly, from (4)-(7), if xn , xn−1 ,... and un , un−1 ,...
are system measures, it is xtn , xtn−1 ,... and utn ,
utn−1 ,... andF is Lipschitz, the samples, the prediction
xn+1 as well as the local error εn+1 yield bounded too.
Besides, xn → xtn for h→ 0.

4 Adams-Bashforth Sampled-Data Model for a
Vehicle

Now using (1)-(2), it is valid in compact form
v̇ = G(η,v)+M−1(τ+τ c) (8)
η̇ = H(η,v+vc) (9)

where the vector functions G and H are valuable ex-
pressions specified in the right members of (1) and
(2), respectively, for the continuous-time model with
known η and v, cable and flow perturbations τ c and
vc , and control action on the thrust τ .
Let us regard the Adams-Bashforth approximation of
order s in the estimation form for the ODE system (1)-
(2). Hence, it is valid

vn+1 = vtn+a1
¡
Gtn+M

−1τn
¢
+...+ (10)

+as
¡
Gtn−s+1+M

−1τn−s+1
¢

ηn+1 = ηtn+b1Htn + ...+ bsHtn−s+1 , (11)

where ai and bi are associated coefficients to the s-
order approximation according to (4)-(7), Gtn and
Htn . It is noticing that the predictor (10)-(11) is fed
with exact samples of the continuous-time behavior.
Moreover, the control action τ is retained one sam-
pling period h by a sample and holder, so, it is valid
τn = τ tn , it means that there is a sample and, at the
same time, an input of the sampled-data model.
For any digital controller design a known sampled-
data model of the system is necessary. Though the
model looks awkward to deal with, above all for large
order s, the sampled-data model is modularly com-
posed by delayed terms as indicated in (10)-(11). This
modularity could be exploited in future designs of con-
trollers.

In the following we illustrate results from a case study
by means of numeric simulations of the open-loop
continuous-time system (1)-(2) for a full-actuated ROV
in 6 DOF along a quasi helicoidal path (see [Jordán
and Bustamante, 2008]). In this way local and global
errors originated in the sampled-data models (4)-(7)
with respect to the exact sampled-data behavior for
different sampling periods h and orders are compared
and listed in Table I. The Comparison of the Adams-
Bashforth method with another approximations in the
form of interpolation approaches and black box mod-
els for control-system design purposes is presented in
[Jordán and Bustamante, 2009].
The sampled-data model (10)-(11) contains the physi-
cal matrices. If they are completely known, this model
can be applied to digital controller design. In case the
physical matrices are not available, identification meth-
ods may be technically feasible to provide a model
from sampled data despite the lack of parsimony. The
proposition and evaluation of estimation methods fall
outside the paper and is a goal of future research.

Table I - Influence of the sampling period and model
order on the local error ε and global error � for a

vehicle in 6-DOF navigation in open loop along a helix
h = 0.01(s)

s 1 2 3 4
εηn
εvn

3.687.10-9

5.564.10-8
3.829.10-11

1.722.10-10
8.303.10-15

9.153.10-11
9.178.10-15

2.858.10-10

�η
�v

9.672.10-0

4.083.10-1
5.000.10-3

3.070.10-2
7.086.10-6

3.251.10-5
8.840.10-6

3.599.10-5

h = 0.05(s)

s 1 2 3 4
εηn
εvn

2.299.10-6

3.513.10-5
6.162.10-8

9.138.10-7
1.745.10-9

4.455.10-8
9.802.10-11

4.285.10-8

�η
�v

8.552.102

0.4083.102
1.081.10-1

2.390.10-1
7.820.10-2

4.860.10-2
1.600.10-3

2.28..10-2

h = 0.1(s)

s 1 2 3 4
εηn
εvn

3.657.10-5

5.770.10-4
3.641.10-6

5.797.10-5
4.311.10-7

7.634.10-6
6.352.10-8

2.428.10-6

�η
�v

unstable
unstable

6.018.10-0

3.519.10-1
2.283.10-0

1.740.10-1
1.820.10-1

2.169.10-1

h = 0.5(s)

s 1 2 3 4
εηn
εvn

1.880.10-2

4.318.10-1
3.530.10-2

1.123.10-0
7.460.10-2

1.148.10-0
1.685.10-1

2.628.10-0

�η
�v

unstable
unstable

unstable
unstable

unstable
unstable

unstable
unstable

5 Design of a Digital Controller for Path Tracking
We are able now to design specific digital controllers
based on Lyapunov functions. To this end, let us sup-
pose the interest lies on the path tracking of geomet-
ric and kinematic reference trajectories in discrete-time
form specified as ηrtn and vrtn , respectively. We then
define the exact sampled path errors as



v
ηtn = ηtn−ηrtn (12)
v
vtn = vtn−J−1tn η̇rtn+J

−1
tn Kp

v
ηtn . (13)

whereKp = KT
p ≥ 0 is a gain matrix affecting the geo-

metric path error and J−1tn means J−1(ηtn ). Clearly, ifv
ηtn≡0, then by (13) and (2), it yields vtn−vrtn≡0.
Let us consider errors of the sampled-data model pre-
dictions

εηn = ηtn−ηn (14)
εvn = vtn−vn . (15)

A one-step-ahead prediction is supported by the
sampled-data model (10)-(11). So it is valid
v
ηtn+1=

v
η tn+ (16)

+b1Jtn

hv
vtn+J

−1
tn η̇rtn−J

−1
tn Kp

v
ηtn

i
+

+
sX

i=2

biJtn−i+1vtn−i+1+ηrtn−ηrtn+1+εηn+1
v
vtn+1=

v
vtn+ (17)

+J−1tn η̇rtn−J
−1
tnKp

v
ηtn−J−1tn+1η̇rtn+1+J

−1
tn+1Kp

v
ηtn+1+

+
sX

i=1

as
¡
Gtn−i+1+M

−1τn−i+1
¢
+ εvn+1 ,

where τn is the unknown for controller design and
εηn+1 and εvn+1 are the uncertainties of the model-
based prediction.
We now define a cost functional of the path error en-
ergy

Qtn =
v
η
T

tn

v
ηtn+

v
v
T

tn

v
vtn , (18)

which is a positive definite and radially unbounded
function in the error vector space. We will then design
a digital state feedback for the path tracking problem
for a vehicle system dynamics and afterward search for
conditions to ensure the regulation ofQtn about zero as
tn tends to infinity.
The controller design will be carried out by establish-
ing the incremental value of Q at tn+1 when only pre-
dictions ηn+1 and vn+1 are available and τn is the
unknown control action. Thus, using (18) and (16)-(17)
one gets
∆Qtn=Qtn+1 −Qtn= (19)h³
I − b1Kp

´ v
ηtn + b1

³
Jtn

v
vtn+η̇rtn

´
+

+
sX

i=2

biJtn−i+1vtn−i+1 +ηrtn−ηrtn+1+εηn+1
¸2
−

−vηTtn
v
ηtn+

+

vvtn+J−1tn η̇rtn−J
−1
tn Kp

v
ηtn−

− J−1tn+1 η̇rtn+1
+J−1tn+1Kp

v
ηtn+1+a1(Gtn+M

−1
τn)+

+
sX

i=2

as(Gtn−s+1+M
−1
τn−s+1 )+εvn+1

#2
−

−vvTtn
v
vtn .

For the sake of simplicity in the notation, the inner
product for vectors xTx was indicated as x2 .
The control action τn can be decomposed into two
components

τn = τn1 + τn2 , (20)
with the first one designed as

τn1 =M

µ
−Kv

v
vtn+

1

a1

³
−J−1tn η̇rtn+ (21)

+J−1tn+1 η̇rtn+1
−J−1tn+1Kp

v
ηtn+1+J

−1
tn Kp

v
ηtn

´
+

−
sX

i=1

as
a1

¡
Gtn−s+1+M

−1τn−s+1
¢−Gtn

!
,

with Kv = KT
v ≥ 0 another design matrix with Kp.

It is noted that this component cancels almost all the
terms in the kinematics path error vvtn+1 .
Now the second component τn2 will result from solv-
ing (19) with (21)
∆Qtn = (22)

a
¡
M−1τn2

¢T
M−1τn2 + b

TM−1τn2+ c+

+
v
η
T

tna1Kp (a1Kp − 2I) vηtn+
+
v
v
T

tna1Kv (a1Kv − 2I)vvtn+
+F (εηn+1 , εvn+1 ),

with
a=a21 (23)

bT =2a1

³
(I − a1Kv)

v
vtn

´T
(24)

c=a21

Ã
Jtn

v
vtn+η̇rtn +

sX
i=2

bi
a1

Jtn−i+1vtn−i+1

!2
(25)

+a1

³
Jtn

v
vtn+η̇rtn

´T ³
ηrtn−ηrtn+1

´
+

+
³
ηrtn−ηrtn+1

´T ³
ηrtn−ηrtn+1

´
+

+2 (I − a1Kp)
v
ηtn

³
a1

³
Jtn

v
vtn+η̇rtn

´
+

+
³
ηrtn−ηrtn+1

´´
,

and the vector function F fulfilling F (εηn+1 , εvn+1 )→
0 when h→ 0.
Now, if there exist real roots of the polynomial
a
¡
M−1τn2

¢T
M−1τn2 + b

TM−1τn2 + c, then the
conditions for ∆Qtn < 0, at least in an attraction do-
main equal to

B =
nv
ηtn ,

v
vtn ∈ R6 ∩ B0

o
, (26)

with B0 =
nv
ηtn ,

v
vtn/∆Qtn ≥ 0

o
a residual set

around zero , are the following
2

a1
I > Kp ≥ 0 (27)

2

a1
I > Kv ≥ 0. (28)

The residual setB0 depends clearly on εηn+1 and εvn+1 ,
and it becomes the null point at the limit when h→ 0.
The real roots are



τn2 =
−M
2a

b± M

2a

r
bTb− 4ac

6
o, (29)

with o a vector with all the six elements equal to one.
In order to achieve minimal energy of the control action
or eventually to avoid saturation, one can choose the
solution τn2 of the pair with minimal norm.
Finally, the complete control action is implemented at
each discrete time by calculating τn=τn1+τn2 .

6 Switching Controller
If, on the contrary, there are no real roots of the poly-
nomial a

¡
M−1τn2

¢T
M−1τn2 +b

TM−1τn2 +c in
(22) because 4ac > bTb, one can choose the real part
of (29), it is

τn2 =
−M
2a

b, (30)

which gives the minimal value of (22) in the case of
complex root given by

∆Qtn = c−
³
(I − a1Kv)

v
vtn

´2
− (31)

−vηTtna1Kp (2I − a1Kp)
v
ηtn−

−vvTtna1Kv (2I − a1Kv)
v
vtn+F (εηn+1 , εvn+1 ),

with the quantity c >
³
(I − a1Kv)

v
vtn

´2
and Kp and

Kv satisfying (27)-(28). The suboptimal τn2 could still
provide a large attraction domain with a appropriate se-
lection of Kp and Kv, however with a larger residual
set B1 than B0.
In fact the stability in this case will also depend on
the sampling time h or equivalently on a1 = csh,
with cs a constant depending on s (see models in (4)-
(7)). As can be analyzed from (24) and (25), there
is a sufficiently small h so that the positive difference

c−
³
(I − a1Kv)

v
vtn

´2
be smaller that the negative def-

inite terms (31). Also the term F (εηn+1 , εvn+1 ) is in-
significant for smaller h.
Even more important is the fact that a good selection
of the design matrixKv can be favorable to the appear-
ance of real solutions (29). In this respect, one can see
from (24) that Kv =

I
a1
would be the worst selection

because b = 0 and only the solution (29) could be im-
plemented constantly. SoKv has to fulfill

2

a1
I > Kv >

1

a1
I (32)

1

a1
I > Kv ≥ 0. (33)

In view of that the law (29) is optimal with a smaller
residual set B0 than that of the suboptimal law (30),
and that the double scenario of real and complex roots
can arise from time to time, the best control algorithm
could be then built up as a switching control generating
τn=τn1+τn2 with τn1 as in (21) and τn2 as in (29)
for real roots or, alternatively, (30) for complex roots.
In view of the proposed switching controller, it is ex-
pected that the evolution of the control action τn be
jerky when the paths remain close to their references.
This scenario is confirmed by numerical simulations

that describe an alternation between solutions (29) and
(30) in the neighborhood of the residual sets.
Finally, it is noticing that the increment of the order s
of the Adams-Bashforth model entails the linear incre-
ment in the number of terms in τn1 and τn2 , however
they enter in the expressions as additive terms which
simplifies the analysis of both the controller design and
stability, and also the computation of τ significantly.
The choice of s can be done bearing in mind the qual-
ity of the model; yet the most simple model, s = 1, can
be viable for small h.

7 Case Study
In order to illustrate the features of our control algo-
rithm, let us consider the path tracking problem for the
same vehicle used in Section IV. The vehicle has to
navigate along a geometric path shown in Fig. 1 with
a prescribed kinematics in time. The digital control al-
gorithm is implemented according to (20). The sample
time h was chosen 0.1 sec. and the simplest Adams-
Bashforth model of s = 1 was employed.

10 (m)

η (0) 10 (m)

1 (m)

AUV trajectory 
η (t)

Reference trajectory 
ηr (t)ρ=1 (m)

Figure 1. Path tracking problem for a subaquatic
vehicle in 6 DOF.

In Figs. 2 and 3 all the state vector elements of η,
namely x, y, z, ϕ, θ, ψ, and of v namely u, v, w, p, q, r
are depicted comparatively together with the evolution
of their respective references. One notices on the right
hand of this pictures that the transient phase elapses a
short period of about 5 sec. During the whole navi-
gation period optimal and suboptimal solutions for the
control action have taken place with alternation, above
all in the stationary state when the path tracking er-
rors were small. So, the residual set has resulted mini-
mal and was given by the sampled-data model errors of
the order of magnitude of about 10−4 (see Table I for
h = 0.1 sec. and s = 1).
Generally speaking, the all-round performance of the
control system is very good and comparable with the
analogous control obtained at the limit for h → 0
[Jordán and Bustamante, 2007].

8 Conclusions
In this paper outstanding features of numeric meth-
ods based on Adams-Bashforth approximations were
exploited for sampled-data modeling of a large class
of vehicle dynamics in many degrees of freedom. The



sampled-data models contain the original physical ma-
trices of the underlying ODEs of the vehicle dynamics
which make them quite appropriate to translate avail-
able analogous controller designs to digital counter-
parts. Afterwards, the problem of path tracking and
regulation with geometric and kinematic specifications
on the reference paths was focused. An approach to
model-based controller design was presented based on
a Lyapunov method over an incremental functional of
the path error energies. It is proved that the asymptotic
convergence can be ensured for small sampling periods
up to a residual set whose measure depends only on
the one-step-ahead sampled-data model errors. Future
works consider the analysis of the algorithm robustness
when noise perturbations are included in the system.
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Figure 2. Evolution of the position variables.
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Figure 3. Evolution of the kinematic variables.

Design matrices for independently tuning of the kine-
matic and geometric path tracking are provided. They
can be optimally selected in order for both the stability
of the controller and a good transient performance to
be achieved. A case study for a 6 degrees-of-freedom
vehicle using Adams-Bashforth models with different
sampling times and orders was presented. Then the fea-
tures of the proposed digital controller were illustrated
for the same case by means of numerical simulations.
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