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Abstract: This paper addresses the problem of optimal static output feedback
control of linear periodic systems. The proposed approach, which allows to deal
with both stable and unstable open loop systems, relies on a continuous-time
formulation of the control problem. A nonlinear programming based approach is
used to solve the underlying optimization problem. The evaluation of cost function
and its derivative largely benefits of the recent advances in algorithms to solve
continuous-time periodic Lyapunov equations.
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1. INTRODUCTION

Static output feedback (SOF) stabilization of lin-
ear time-periodic (LTP) systems is a challenging
and important problem, since it represents a real-
istic solution for a wide class of practical applica-
tions when full state measurement is not available
and the complexity of a high-order compensator
needs to be avoided. In particular, even in the case
of full state measurement the determination of a
constant stabilising feedback gain is an important
and non trivial problem. The existing literature on
this problem can be briefly summarised as follows.

Stabilizability by means of SOF : the problem of
determining whether a stabilizing constant or
periodic memoryless controller exists is without
doubt an open question. An existence condition

for the periodic feedback case has been provided
in (Colaneri et al., 1998).

Pole placement with SOF : (Ayels and Willems,
1993) suggested a simple algorithm for the assign-
ment of the characteristic exponents of a control-
lable LTP systems, valid only for second order,
discrete-time case. Other works, such as (Juan
and Kabamba, 1989; Chen and Chen, 1999) in-
troduced the concept of generalized sample and
hold functions (GSHF), which makes it possible to
assign multiple poles using output measurements
only once for each period T . Nevertheless, the
GSHF is unsuitable in all applications where the
period is quite long, such as satellite attitude and
orbit control systems.

Linear Quadratic Control with SOF : in (Calise
et al., 1992), a Floquet-transformed LQ cost-



function is considered, penalizing the response
and control envelopes rather than the actual time
histories. In (Varga and Pieters, 1998) the LQ
performance index for discrete-time LTP systems
is minimized by computing the analytical gradi-
ent and exploiting gradient descent optimization
algorithms for which reliable numerical imple-
mentations have been developed (Varga, 2005a).
A similar approach has been proposed in (Aliev
et al., 2005), where the cost function for the
discrete-time case is minimised using a gradient-
free method. More recently, an LMI approach
to the problem has been proposed in (Farges et
al., 2006).

The aim of this paper is to derive a procedure
for the practical determination of a stabilizing
output feedback gain which minimizes a quadratic
performance index. The results presented in this
paper apply equivalently to periodic output feed-
back and periodic state feedback.

2. PROBLEM STATEMENT

Consider the linear time-periodic system

ẋ = A(t)x + B(t)u (1)

y = C(t)x

where A(t) ∈ Rn×n, B(t) ∈ Rn×m, C(t) ∈
Rp×n are periodic matrices of period T , and the
quadratic performance index

J = E

{∫ ∞

t0

[
xT Q(t)x + uT R(t)u

]
dt

}
(2)

with Q(t) ≥ 0, R(t) > 0 symmetric T-periodic
matrices. Suppose that the initial condition x0

is a random variable with zero mean and known
covariance X0 =

{
x0x

T
0

}
. The optimal output

feedback control problem consists in finding the
feedback matrix F (t) of optimal control action

u∗ = F (t)y (3)

which minimizes the performance index J of (2).
The expectation E(·) used in (2) allows to remove
any dependence of the cost function on the initial
condition, hence the resulting optimal gain may
be interpreted as the optimal feedback matrix
in an average sense, i.e., optimal over some set
of initial states. From this point of view, the
covariance matrix X0 is a design parameter which
may be used by the designer who has some a
priori knowledge of which states of the system are
likely to be perturbed (see (Levine et al., 1971)). If
this information is not available, a common choice
consists in assuming an initial state uniformly
distributed over a unit hypersphere (i.e., X0 = I).
On the other hand, a fully deterministic approach
requires to know exactly the initial state, to set
X0 = x0x

T
0 and to optimize J according to it

(Brobrovsky and Graupe, 1971). Under (3), the
closed loop dynamic equation can be written as

ẋ = A(t)x + B(t)F (t)y =

= [A(t) + B(t)F (t)C(t)] x = Ā(t)x, (4)

where Ā(t) = A(t) + B(t)F (t)C(t) represents the
closed loop dynamic matrix, which is obviously
periodic. Let ΦĀ(t, t0) the transition matrix asso-
ciated with Ā(t), satisfying the well known equa-
tion

Φ̇Ā(t, t0) = Ā(t)ΦĀ(t, t0), ΦĀ(t0, t0) = I. (5)

Assume now that a periodic stabilizing gain F (t)
is known, i.e., such that |λi (Ψ)| < 1 ∀i, where the
monodromy matrix Ψ = ΦĀ(t0 + T, t0); then, the
performance index J can be written as

J = E

{∫ ∞

t0

[
xT Q̄(t)x

]
dt

}
(6)

where Q̄(t) = Q(t) + C(t)T F (t)T R(t)F (t)C(t).
Note that since x(t) = ΦĀ(t, t0)x0, (6) is equiva-
lent to

J = E

{∫ ∞

t0

xT
0 ΦT

Ā
(t, t0)Q̄(t)ΦĀ(t, t0)x0dt

}
,

which, defining P (t) =
∫ ∞

t
ΦT

Ā
(τ, t)Q̄(τ)ΦĀ(τ, t)dτ ,

can be expressed as

J = E

{
xT

0

∫ ∞

t0

ΦT
Ā
(t, t0)Q̄(t)ΦĀ(t, t0)dt x0

}
=

= E
{
xT

0 P0x0

}
= tr(P0X0), (7)

where the periodic matrix P(t) satisfies a standard
Periodic Lyapunov Differential Equation (PLDE),
in the so-called adjoint form, i.e.,

−Ṗ (t) = Ā(t)T P (t) + P (t)Ā(t) + Q̄(t). (8)

3. PERFORMANCE INDEX MINIMIZATION

The minimization of (7) can be carried out us-
ing steepest descent methods, provided that an
analytical expression for the gradient of (7) with
respect to the coefficients of F is available. The
problem of determining an initial stabilizing ma-
trix F0 must also be considered, if one aims at
developing a design technique which can work also
for open-loop unstable systems. In the following,
necessary conditions for optimality (and therefore
the required gradient expression) will be devel-
oped. In particular, since the case of constant gain
is more interesting for applications, the hypothe-
sis Ḟ = 0 will be assumed, but it is clear that
structured, time-periodic gains (represented by,
e.g., Fourier series expansions) can be optimised
using the same approach by means of a simple re-
formulation of the control problem, as illustrated
in the example in Section 5. In the following, the
explicit time dependence of all variables will be



omitted for the sake of readability. Recalling (6),
the expression to be minimized is given by

J = E

{∫ ∞

t0

[
xT Q̄(t)x

]
dt

}
. (9)

Following the approach described in (Knapp and
Basuthakur, 1972), let us introduce the Hamil-
tonian function

H = xT Q̄x + λT
x ẋ + ΛT

F Ḟ = xT Q̄x + λT
x Āx =

= tr
[
Q̄xxT + ĀxλT

x

]
(10)

with

λ̇x =−
∂H

∂x
= −2

[
Q + CT FT RFC

]
x +

− [A + BFC]
T

λx, (11)

Λ̇F =−
∂H

∂F
= −

∂

∂F
tr

[(
Q + CT FT RFC

)
xxT +

+(A + BFC)xλT
x

]
. (12)

where Λx(∞) = 0, ΛF (∞) = 0. Making use of the
derivation rules for the trace operator employed
in (Varga and Pieters, 1998), the equation for the
dynamics of the ΛF matrix turns into

Λ̇F =−2RFCxxT CT − BT λxxT CT , (13)

with ΛF (∞) = 0. Necessary conditions for opti-
mality state that

∂

∂F
E {J(F, x(t0)} = E

{
∂

∂F
J (F, x(t0))

}
= 0

(14)
which, according to (13), implies

0 = E

{∫ ∞

t0

−Λ̇F dt

}
=

= E

{∫ ∞

t0

2RFCxxT CT + BT λxxT CT dt

}
=

=

∫ ∞

t0

[
2RFCXCT + BT E

{
λxxT

}
CT

]
dt,

where X = E
{
xxT

}
. Performing the substitution

λx = 2P (t)x, where P (t) is a symmetric positive
definite matrix, (11) gives

2Ṗ x + 2PĀx = −2Q̄x − 2ĀT Px (15)

which is same equation represented by PLDE (8),
having the periodic solution P (t); moreover, the
above substitution also implies that

∇F J = 2

∫ ∞

t0

(
RFC + BT P

)
XCT dt = 0. (16)

Note that the state covariance matrix X satisfies
the homogeneous linear matrix differential equa-
tion

Ẋ = ĀX + XĀT . (17)

Remark 1. An alternative way to obtain the gra-
dient expression (16) avoids the need for the sub-
stitution λx = 2P (t)x (which might appear some-
what arbitrary); the idea is to note that the min-
imization of the performance index J = tr(P0X0)
is equivalent to the minimisation of

J = tr

(∫ ∞

t0

P (t)X(t)δ(t − t0)dt

)

where δ(t − t0) represents the Dirac function.
Observe that the quantities P (t) and X(t) are
different from zero only if t ≥ t0 . Introducing the
new Hamiltonian function

H = tr
[
PXδ(t − t0) − ΛT

P

(
ĀT P + PĀ + Q̄

)]

one concludes that first order optimality condi-
tions can be expressed again as (16).

In order to write the analytical expression of the
gradient in a form suitable for numerical opti-
mization algorithms, the integral in (16) should be
computed only over a finite horizon. This can be
achieved as follows. Note that (16) can be written
as

∇F J = 2

∫ ∞

t0

(
RFC + BT P

)
XCT dt =

(18)

= 2

∞∑

n=0

∫ t0+T

t0

[(
RFC + BT P

)
X(t + nT )CT

]
dt

Since x(t+nT ) = ΦĀ(t+nT, t0)x0 = ΦĀ(t, t0)Ψ
nx0,

we have

X(t + nT ) = E
{
x(t + nT )x(t + nT )T

}
=

= ΦĀ(t, t0)Ψ
nX0 (Ψn)

T
ΦT

Ā
(t, t0), (19)

and substituting (19) into (18) we obtain

∇F J = 2

∫ t0+T

t0

(
RFC + BT P

)
VĀCT dt (20)

where VĀ = ΦĀ(t, t0)V ΦT
Ā
(t, t0) and matrix V

is symmetric positive definite and satisfies the
discrete Lyapunov equation

V = ΨV ΨT + X0. (21)

Moreover, it is easy to show that the term VĀ

satisfies the differential Lyapunov equation

V̇Ā = ĀVĀ + VĀĀT , VĀ(t0) = V. (22)

We summarise the above results in the following
proposition.

Proposition 2. Let F be a constant stabilizing out-
put feedback gain and assume that the matrices
Ā(t), Q̄(t) and X(t) are given respectively by
Ā = A + BFC, Q̄ = Q + CT FT RFC and X(t) =



ΦĀ(t, t0)X0ΦĀ(t, t0)
T ; hence, the expressions for

the performance index (2) and its gradient are
given by

J(F,X0) = tr (P0X0) (23)

∇F J(F,X0) =

= 2

∫ t0+T

t0

[
BT P + RFC

]
VĀCT dt (24)

where VĀ = ΦĀ(t, t0)V ΦT
Ā
(t, t0) and the symmet-

ric periodic matrices P (t) and V satisfy, respec-
tively, the PLDE

−Ṗ = ĀT P + PĀ + Q̄ (25)

and the discrete Lyapunov equation (DLE)

V = ΨV ΨT + X0. (26)

The optimization of (23) requires that the LTP
system (1) is output stabilizable and, at each
iteration i, Fi belongs to the set SF ⊂ Rm×p of
stabilizing feedback gains. Formally, the optimiza-
tion problem can be stated as follows:

min
F∈SF

J(F,X0) = min
F∈SF

tr (P0X0) (27)

The stopping criterion, indicating the convergence
to a local solution of (27) will be ‖∇F J‖ < tol.
Finding a constant stabilizing matrix F0 for the
initialization of the algorithm is generally a non
trivial problem. For this reason, the procedure
indicated in (Aliev et al., 2005) for discrete LTP
systems may be followed. The first step consists
in considering a modified LTP system having
the dynamic matrix Aµ(t) = A(t) + µI; this
new system will be associated to the modified
optimization problem

min
(F,µ)∈SFµ×R

tr (P0X0) + σµ2 (28)

where σ > 0 typically takes large values. One may
expect that, if σ is sufficiently large, the iteration
variable µ will converge rapidly to zero, and there-
fore the optimization problem (28) will coincide
with the nominal problem (27) as µ → 0. Now
the initialization problem consists in finding an
initial value for the scalar µ such that, assuming
F0 = 0 for simplicity, ρ

(
ΨAµ

)
< 1. In order to

determine the gradient of J̃ , one may observe that
the problem (28) is equivalent to the minimization
of the functional

J = tr

(∫ ∞

−∞

σµ2δ(t − t0)dt

)
+

+ tr

(∫ ∞

t0

PXδ(t − t0)dt

)
, (29)

and considering the Hamiltonian function

H = tr
[(

PX + σµ2I
)
δ(t − t0)+

−ΛT
P

(
ĀT

µ P + PĀµ + Q̄
)]

(30)

where Āµ = Aµ(t) + B(t)FC(t), the extremality
conditions are given by

Λ̇F = −
∂H

∂F
= 2

(
BT P + RFC

)
ΛP CT ,

Λ̇P = −
∂H

∂P
= ĀµΛP + ΛP ĀT

µ − Xδ(t − t0),

Λ̇µ = −
∂H

∂µ
= −2

[
µσδ(t − t0) + tr

(
ΛT

P P
)]

,

where ΛF (∞) = 0, ΛP (∞) = 0 and Λµ(∞) = 0.

Observing that ∇F J̃ is analogous to (20), the
sensitivity of the cost function J̃ with respect to
µ can be expressed as

∂J̃

∂µ
= 2µσ +

∫ t0+T

t0

tr
[
PΦĀµ

(t, t0)

∞∑

n=0

Ψn
µX0

(
Ψn

µ

)T
ΦT

Āµ
(t, t0)

]
dt. (31)

These results are summarised in the following
proposition.

Proposition 3. Let F be a constant stabilizing out-
put feedback gain and assume that the matri-
ces Āµ(t), Q̄(t) and X(t) are given respectively
by Āµ = Aµ + BFC, Q̄ = Q + CT FT RFC
and X(t) = ΦĀµ

(t, t0)X0Φ
T
Āµ

(t, t0); hence, the

expressions for the performance index (28) and
its gradient are

J̃(F, µ,X0) = tr (P0X0) + σµ2 (32)

∇F J(F, µ,X0) =

= 2

∫ t0+T

t0

[
BT P + RFC

]
VĀµ

CT dt (33)

∂J̃

∂µ
(F, µ,X0) = 2µσ+2

∫ t0+T

t0

tr
[
PVĀµ

]
dt (34)

where VĀµ
= ΦĀµ

(t, t0)V ΦT
Āµ

(t, t0) and the sym-

metric periodic matrices P (t) and V satisfy, re-
spectively, the PLDE

−Ṗ = ĀT
µ P + PĀµ + Q̄ (35)

and the DLE

V = ΨµV ΨT
µ + X0. (36)

4. NUMERICAL ISSUES

The computation of the function and its gradient
involve the numerical solution of the PLDE (35),
the DLE (36) and the computation of the integrals
(33) and (34). We address these problems shortly
in what follows.

Multiple-shooting methods to solve PLDEs have
been proposed in (Varga, 2005b). Let N ≥ 1 be an



integer such that ∆ := T/N represents a mean-
ingful time increment to determine the solution
P (t) of (35). The solution P (t) at successive time
moments (k − 1)∆ and k∆ satisfies

Pk = ΘT
k Pk+1Θk + Wk (37)

where

Pk := P (t0 + (k − 1)∆) ,
Θk := Φ

Aµ
(t0 + k∆, t0 + (k − 1)∆) ,

Wk := W̃ (t0 + k∆, t0 + (k − 1)∆)

with

W̃ (tf , t) :=

∫ tf

t

ΦT

Aµ
(τ, t)Q̄(τ)Φ

Aµ
(τ, t)dτ (38)

By imposing PN+1 = P1, the N coupled equations
in (37) for k = 1, . . . , N represent a discrete-
time backward periodic Lyapunov equation which
can be solved using the algorithms proposed in
(Varga, 1997). Thus, by solving the N simultane-
ous equations (37), we determine N values of the
solution P (t) at equidistant time instants. Since
the time increment ∆ can be chosen arbitrarily
small, this multiple-shooting approach is certainly
suited for problems with large periods and/or
marginally stable dynamics when evaluating Θk

and Wk, k = 1, . . . , N .

It is easy to observe that solving the DLE (36) can
be cast as the solution of a discrete-time forward
periodic Lyapunov equation

Xk+1 = ΘT
k XkΘk + Gk (39)

where G1 = · · · = GN−1 = 0, GN = X0 and the
solution of (36) is simply V = X1. The solution
of (39) can be computed using the algorithms of
(Varga, 1997). Solving the PLDE instead of the
standard DLE has several advantages. First, the
method used to solve both equations relies on the
computation of the periodic Schur form of the
matrix Θk. Thus, both equations can be solved
with a single reduction. Second, the computed
solution Xk represents the value of VĀµ

((k−1)∆)
and, as shown below, can be used efficiently to
evaluate the integrals (33) and (34).

The evaluation of the gradient via the integrals
(33) and (34) can be done efficiently by integrating
simultaneously the PLDE (35), with P (t0) = P1,
and

V̇Āµ
(t) = Āµ(t)VĀµ

(t) + VĀµ
(t)ĀT

µ (t),

with VĀµ
(t0) = X1 and the ordinary differential

equations

ĠF (t) = 2(BT (t)P (t) + R(t)FC(t))VĀµ
(t)CT (t)

with GF (t0) = 0 and

ġµ(t) = 2tr[P (t)VĀµ
(t)], gµ(t0) = 0.

The gradient components are

∇F J(F, µ,X0) = GF (t0 + T ),

∂J̃

∂µ
(F, µ,X0) = 2µσ + gµ(t0 + T ).

Table 1. Comparison of optimal closed
loop performance.

Control J

open loop 1.451
LQ S.F. optimal (PRE) 0.63

LQ S.F. optimal averaged over T 0.792

LQ S.O.F. sub-optimal 0.643

Difference with PRE 2.02%

5. EXAMPLE

As a simple example, the SISO periodic system
proposed in (Lovera et al., 2002), given by

A(t) =

[
−1 + sin(t) 0
1 − cos(t) −3

]
B(t) =

[
−1 − cos(t)
2 − sin(t)

]
,

C =
[
0 1

]
D = 0

has been analyzed. For this system, constant and
periodic SOF controllers have been designed, with
Q = I2×2, R = 1. In particular, the peri-
odic controller has the structure F (t) = F0 +∑N

n=1(Fnc sin(t) + Fns cos(t)), 1 ≤ N ≤ 3. Note
that the system is open-loop stable (its charac-
teristic exponents are -1 and -3), so we can run
the optimization procedure (using the fminunc
Matlab function) with the initial gain F = 0.
For the constant gain case, after 7 iterations (rel-
ative tolerance 1 × 10−8) the optimal gain 0.681
was found (the stability limit for this system is
F < 1.6). Comparing the SOF solution with the
LQ full state-feedback periodic control the results
reported in Table 1 were obtained. This solution
may be improved considering the periodic F (t)
with an increasing number of harmonics. The re-
sults (see Table 2 and Figure 1) show that the
first harmonic is the most relevant, as could have
been expected. Besides, this numerical analysis
underlines the significance of the constant feed-
back case, particularly in view of applications.
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0.8
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t

x
2

Open loop

Constant feedback

Harmonic feedback (up to 3/rev)

Fig. 1. State vector trajectory from x0 = [1, 1]T .

Finally, in order to show the effect of the choice
of the covariance matrix of the initial state on
the minimization of the performance index, the
two approaches proposed in Section 2 have been
applied: a normal distribution with zero mean and
unitary standard deviation of initial conditions



Table 2. Periodic feedback gains optimization.

Harmonics (N) F̃ Diff.with PRE (%)

0 0.6810 2.1

1 [0.18268, 0.70010, 0.27482] 0.05
2 [0.14390, 0.63628, 0.30402, 0.06944,−0.00058] 0.02

3 [0.13546, 0.62382, 0.32978, 0.09989,−0.01020,−0.03783,−0.00035] 0.01

0 1 2 3 4 5 6 7 8 9 10
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

F

Optimal constant gain

Optimal harmonic gain (up to 3/rev)

Fig. 2. Constant vs Harmonic optimal SOF Con-
troller.

x0 (1000 samples) has been generated; then, for
each sample, the corresponding deterministic per-
formance index has been computed using the SOF
controllers optimized, respectively, for X0 = I and
X0 = x0x

T
0 . The results reported in Table 3 show

that the assumption X0 = I leads to a closed-loop
system that behaves better in an average sense,
i.e., with a smaller expected cost µJ and variance
σJ . On the other hand, the hypothesis X0 = x0x

T
0

slightly reduces the stability degree of the closed-
loop system but proves to be the best choice when
the initial state is known exactly (smaller Jx0).

Table 3. Performance evaluation with
random initial conditions.

X0 F ∗ µJ σJ Jx0 s.deg.

I2 0.06813 1.3913 3.0905 1.33026 0.0067
x0xT

0
0.68104 2.0758 6.5960 0.64271 0.0518

6. CONCLUDING REMARKS

The problem of optimal static output feedback
control of linear periodic systems has been consid-
ered and a novel, continuous-time approach has
been proposed, which allows to deal with both
stable and unstable open loop systems.
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