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Abstract: The paper discusses a method of synthesis of a nonlinear orientation system with gyro-
flywheels. The system must guarantee the robustness of the stability property of the flexible 
spacecraft (FS) movement. Two-stage procedure of the FS parameters correction and further ex-
tension of the base control algorithm was suggested. In the extended algorithm the estimations of 
the unstable modes of the FS elastic oscillations were used. Some results of computer simulation 
of the suggested orientation system were obtained. These results confirm the efficiency of the 
control algorithm and the stability robustness of the FS construction elastic oscillations. 
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1. INTRODUCTION 

At present, the spacecraft orientation systems are usually 
discrete ones. It is due to the requirements for reliability and 
economic functioning of the orientation systems and because 
of the on-board computers for realization control algorithms 
are used. The discontinuous character of the control actions is 
the main cause of the arising elastic oscillations of the FS 
construction. A priori uncertainty of the FS parameters and 
their variation stipulated by the presence of moving masses 
(for example, panels of the solar batteries, antennas and so 
on) can lead to increase of these elastic oscillations and in-
stability of the feedback system motion. 
 
In Krutova (2001), it was shown that the forms of the "rapid" 
components ( ), ( 1, )ix t i n=�  envelopes depend on the value of the 
control discreteness interval ],[ max0min00 TTT ∈ . At this point 
in the course of the object functioning at some fixed range of 
the value 0T  the following situation may occur: one part of 
the motion ( )ix t x− −⊂� �  is stable, the other part 0 0( )ix t x⊂� �  is 
neutral (amplitudes of the elastic oscillation )(~ txi  are con-
stant) and the last part ( )ix t x+ +⊂� �  is unstable. Even if the fre-
quency of one mode of the elastic oscillation is close to the 
value 1

0uf T −=  or divisible by uf  then it will be a resonance 
and the system motion will be unstable (Rutkovsky  et al., 
1998). 
 
One of the main tasks of this paper is the synthesis of the 
control algorithm that guarantees the stability of both slow 
("rigid") and rapid motions taking into account the uncer-
tainty of the FS parameters. The solution of this task is ef-
fected on the basis of the robustness realization of the sug-
gested regulator that guarantees the extension of the motions 
x−�  and 0x�  domains. The unstable modes ( x+� ) are estima-

tions (Sukhanov et al., 2003) and are damped out by the 
regulator. Such an approach can be called the synthesis of the 
control system that has the property of the robustness with 
respect to stability (Kosut  et al., 1983). 

2. THE ANGULAR MOTION EQUATIONS  
OF THE FS WITH FLYWHEELS 

The dynamics of angular motion of the considered type me-
chanical systems is usually described by the Lagrange equa-
tions in the finitely element form: 
 

Aq Bq Q+ =�� ,    (1) 
 

where q is the ( ' 1)n × -dimensional vector of generalized co-
ordinates that defined the FS position and configuration, 

' 3n n= + ; A, B are the symmetric matrices (n'×n')  of masses 
and flexibility; Q KM=  is the vector of generalized forces, 
K is the (n'×l) -dimensional vector of the actuator device in-
fluence coefficients, T

1 2 3( , , )M M M M=  is the vector of con-
trol action. 
 
Usually, it is required to have the small values of the devia-
tions from the stationary ones 0( ) 0q t ≡  (regime of stabiliza-
tion). In this case, the linearized model can be written as fol-
lowing 

* *A x Bx K M+ =�� ,   (2) 
 

where 0( ) 0x q q− ≤ →� ε , * *,A K  are the constant matrices 
corresponding to A and K . 
 
Equation (2) can be represented in the modal-physical form 
(Glumov et al., 1998) that defines the rotational motion 

( ), 1, 2,3ix x i= = , of an object in the inertial space 



 

2( ); ( ); ;x Nm u s s Km u x Ls x x x= + = = = +�� �� � �ω ,        (3) 

where T( )js s=  is the n'-dimensional vector of normal co-

ordinates; 2 2( ), 1,jdiag j n= =�ω ω ; j�ω  are the fundamental 

frequencies of the FS elastic oscillations; 1( ) ( )m u I M u−= , 
( , , )x y zI diag I I I= ; 1

11N A I−= ; L  is the matrix of connection 

of the coordinates x�  and s , see Glumov et al. (1998); x  is 
the vector of the object coordinates, when it is rigid; x�  is the 
vector of additional displacements of the coordinates ( )x t  
due to the object construction elasticity. The elements of the 
vector ( ), 1, 2,3ix x i= =  are considered as the Euler angles. 
 
As an actuator device in the considered FS the flywheels are 
used. They are one-dimensional gyro with control rate of 
rotation (Raushenbakh and Tokar, 1974). The control actions 

( )M u  in (3) are the moments of dynamic reaction forces 

r r r, ,x y zM M M  that appear at acceleration and deceleration 
flywheels 
 

r r r, , ,x x x y y y z z zM J M J M J= − Ω = − Ω = − Ω� � �            (4) 

 
where zyx JJJ ,,  are the moments of the flywheels inertia 

(usually JJJJ zyx === ); , ,x y zΩ Ω Ω  are the projections 
of absolute rate of rotations on the fixed-body coordinate 
system. 
 
Let 000 ,, zyx ΩΩΩ  be the moments of the flywheels rate of 
rotation that correspond to no perturbed motion of the FS in 
an orbit with the rate 0 z e= −ω ω . At small displacements 

, ,ϕ ψ ϑ  of the fixed body coordinate system from base one 
the FS angular velocity will be 
 

, ,x e y e z e= + = − = −�� �ω ϕ ω ϕ ω ψ ωψ ω ϑ ω .   (5) 

 
The rates of rotation of the flywheels are written as following 
 

 0 0 0, , ,x x x y y y z z zΩ =Ω +∆Ω Ω =Ω +∆Ω Ω =Ω +∆Ω   (6) 

 
where zyx ∆Ω∆Ω∆Ω ,,  are the small increments that are 
used for eliminating the orientation errors. 
 
Usually, ϑψϕ ��� ,,  are much more then eω . In this case, the  
terms with eω  in (5) can be omitted. If gyro moments are 
small, the FS three-dimensional motion  can be considered as 
the sum of three independent ones (roll, course and pitch). In 
this case system (3) is separated on three independed ones in 
the modal-physical form (Glumov et al., 1998). Each system 
is described the FS angular motion with respect to any or-
thogonal axis of inertia coordinate system 
 

( ) ,
,

x x km u
x exΣ

= − +

=

�� ω
                   (7) 

where T
1 2( , , ,..., )nx x x x x= � � � ; xΣ  is output coordinate of 

the FS angular position; 2 2
1diag (0, , ..., )nω ω ω= � � , 

T
1(1, ,..., )nk k k= � � , (1,1,...,1)e =  is (n'+1)-dimensional unit 

vector, ( )m m u≡  is scalar control action, ( , , )vu x t λ  is the 

control signal of the flywheel input, vλ  is a varied coeffi-
cient of the control algorithm. 
 
Represented in the scalar form the FS modal-physical model 
(MPM) of one-dimensional angular. motion (7) (for example 
on the plane of pitch, where x ϑ� ) can be written as follows 
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In equations (8): x xΣ�  is the measured coordinate of FS; x  
is the coordinate of the "rigid" object motion, x~  is the coor-
dinate of the FS additional motion due to the elasticity of the 
object construction; , 1, ,i i nω =  are fundamental frequencies 

of the FS; ik�  are the excitability coefficients. The equations 
(8a) define the main part of the FS motion Cxx ~, . They de-
scribe the motion of FS "kernel" and consist of the equation 
for "rigid" motion and equations of the elastic modes con-
tributory essential influence on the FS dynamics. Among 
these modes some unstable ones can be. Equations (8b) de-
scribe the motion Rx~  that due to the modes with high fre-
quencies and small degrees of excitability ( cj cix x� �� ). Usu-
ally these modes are stable and have small influence on the 
FS dynamics. Because of this, the sum of these modes can be 
often considered as a noise of the object. 
 
Torque r ( )zM u  is the contour action of the flywheel; 

( , , )u u x x t= �  is the control law. Index z defining motion with 
respect to the pitch is omitted further. 
The moment of the gyro-flywheel dynamic reaction is de-
fined in the form (Raushenbakh and Tokar, 1974) 
 

r d fM M M= − + ,   (9) 

 
where dM  is the moment of the flywheel engine, fM  is the 
moment of resistance on the engine shaft. 
 
From (9) for increments of the moments we have 
 

r d fM M M∆ = −∆ + ∆ .   (10) 

 



 

For dc-motor and also for ac-motor (Alekseev and Bebenin, 
1964) we have the model 
 

d uM k u kΩ∆ = ∆ − ∆Ω ,                     (11) 

 
where , 0uk kΩ >  are the constant coefficients, ∆Ω  is the 
increment of the flywheel rate of rotation that corresponds to 
the signal u∆ . 
 
The moment of momentum of the mechanical system "FS-
flywheel" for unperturbed motion with respect to the oz axis 
is the following:  
 

0 0eK I J= − ω + Ω .   (12) 
 

And for small displacements it is correctly to write 
 

0( )eK I x J J= −ω + Ω + ∆Ω� ,           (13) 
 

where x ϑ�� � . On the basis of the law of conservation of mo-
mentum it is 0K K= . From this and from  (12) and (13) we 
can obtain 
 

I x
J

∆Ω = − � .    (14) 

 
Substituting (14) in (11), we obtain the expression for the 
engine moment 
 

d ( ) , 0u
IM u k x k u k k
Jω ω Ω∆ = + ∆ = >� .      (15) 

 
Further taking into account (10) and assuming f 0M∆ ≈ , we 
shall get the equation for the FS control moment 
 

r ( ) ( )uM u k x k uω= − +� .                   (16) 
 
Now from (8a), (8c) and (16) we obtained MFM of the FS 
with a flywheel 
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Equations (17) can be rewritten in the form 
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where 1 1
10, ,u uk k I k k I f k x− −

ω ω Σ Σ ω′ ′ ′= > = − =� �  is the distur-
bance due to the elastic oscillations. 

From equation (18) it is shown that using wheels as a control 
device leads to appearance of damping in the control system. 
This fact affects positively on the robustness of stability 
property with respect to elastic oscillations. But the coeffi-
cient 1k k I −

ω ω Σ′ =  is very small. Therefore, this damping is 
also small and the control system motion can be unstable 

because of the terms 1f�  and 
1

2
1,

( )
n

i i
j j i

f k k x xω
= ≠

′= + ∑� �� �  in  (18). 

This means that to increase the stability margin of the system 
and the stability robustness, it is necessary to have active 
control. 
 
The control law is chosen as a PD-algorithm (Alekseev and 
Bebenin,  1964). It is the simplest algorithm and it has the 
following form 
 

0 1 2( ) [ ( ) ]u t k k x x k x∗= − − + � .       (19) 
 
Here 0 1 2, ,k k k  are the constant coefficients, x∗  is the re-
quired value of the angle x. 
 
This algorithm is called as a base one. If control law is real-
ized with the help of on-board computer, algorithm (19) must 
be rewritten in a digital form 
 

0 1 2ˆ ˆ( ) [ ( ) ( )], 0,1,2,...k k ku t k k x t k x t k= − + ∆ = ,       (20) 

where 1
, 1

1

ˆ ˆ( ) , 0,1,2,...
S

k k s k
s

x t x S x k−
−

=

= = =∑  is the estimation of 

the coordinate ( )x t  on the discreteness of the k-th interval 

0T . For the ˆkx  estimation s values of the coordinate 

, 1( ), 1,s kx t s S− = , are used during the previous the ( 1)k − -th 

interval 0T . The values 1
0 1ˆ ˆ ˆ ˆ( ) ( )k k k kx t x T x x−

−∆ = ∆ = −  are 
calculated as the first difference of the coordinate ˆ( )kx t . For 
discrete system the signal ( )ku t  is constant on the interval 

0T  and the control law ( )ku t  and control action r ( )M u  are 
discontinuous. 

3. PARAMETRIC ENSURING OF ROBUST  
STABILITY  

As control law (20) is discrete one, systems (18), (20) are 
nonlinear. So to investigate its stability, the method of simu-
lation is used. 
 
As a control object we consider FS with the constant main 
parameters ( 4 210I kg m≈ ⋅ , 2

1 0[( ) 1] 4 10k I I= − ≥ ≈� π ). In 
equations (18) the value 1 1n =  was chosen. It corresponds to 
the case when only one mode is taken into consideration, but 
by convention it is possible to consider that the frequency 

i�ω  at its increasing will be as the frequency of the second 
the third modes and so on. Realizing the simulation the tran-
sient processes of the system (18), (20) at 

0 1var, constT = ω =�  and using the method of calculating 

index λ of the envelope ( )Env[ ( ( ))] i t
ix u t eλ ω≈ ��  (Glumov  et 



 

al., 1998), it is possible to define the regions 0T −∆ , 0T +∆ , 
0

0T∆  where 0( , )ix t T�  corresponds to 0, ,x x x− +� � �  (Fig 1). 
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Fig. 1. Stability regions at the coefficient 0kω = . 
 

For example, at 11,5i sω −=�  these regions are the following:  

0 1,2T −∆ =  for 0 (0 1,2)T = ÷ ; 0 1,8T+∆ =  for 0 (1,2 2,9)T = ÷ ; 

0 1,0T −∆ =  for 0 (2,9 3,9)T = ÷ ; 0
0 0,9T∆ =  for 

0 (3,9 4,8)T = ÷ ; 0 1,3T +∆ =  for 0 (4,9 6,2)T = ÷  and so on. 
 
The results shown in Fig 1 (the coefficients 1 7,5k = , 

2 275k =  were chosen for the conditions of the control qual-
ity of the " rigid" motion) were obtained when the parameter 

0kω = . This case corresponds to the situation when as the 
control devices use was made, for example, of gas nozzles 
that do not give damping of the elastic oscillations. The 
aforementioned results show that the boundaries of the re-
gions 0, ,x x x− +� � �  are very clear. Really, these boundaries are 
some fuzzy ones because the procedure of the parameter λ  
estimation is approximate. 
 
The boundaries lowh  and suph  isolate the regions where at 
the left of the curve lowh  the component ( )iix tω��  at all 0T  

belongs to x−�  and at the right of the curve suph  the compo-

nent ( )iix tω��  at all 0T  belongs to 0x� . 
 
It should be noted that increasing the number of the modes 
that are taken into account does not change the position of all 
boundaries on the plane 0( , )i Tω� . 
 
The FS motion stability of the system (18), (20) at 0kω =  
can be ensured only when inside the interval 

0 0 min 0 max[ , ]T T T∈  it is possible to have the value 0 0T T ∗=  for 

which all modes ( )iix tω��  do not belong to the region x+� . In 

particular, in the considered example of 0 4T s∗ =  the FS mo-

tion is stable if {[0,42 1,06]iω ∉ ÷� , [1,95 2,65]}÷  (Fig 1). It is 
clear that inaccuracy of knowing the frequencies iω� , their 
varying, fuzziness of the regions boundaries and relatively 
smallness of the regions x−�  lead to low stability robustness. 
 
Now let us consider the case of using gyro-flywheel as the 
control device, so that 0kω > . Mathematical simulation 
shows that even at small values 0kω >  the regions 0x�  are 
substituted for the regions x −�  because the modes damping 
appeared in the system. At this boundary suph  isolates from 

the right the region of weakly damped modes x −�  for all 

1, 1,i i nω =�  that comply with the condition sup 0( )i h Tω ≥� . So 
in this case, the system can possess the property of the stabil-
ity robustness. 
 
In the region that is situated from the left boundary lowh  the 
elastic modes are damped much better but the degree of the 
stability robustness is lower than in previous case. 
 
At further increasing the coefficient kω  robust stability re-
gion widen (Fig 2). The single region of unstable x+�  is con-
structed step by step. 
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Fig. 2. Stability regions at coefficient 0,02kω = . 
 

In principle, increasing the value of the coefficient kω  (coef-
ficient of moment of the flywheel motor) is limited (Alek-
seev and Bebenin, 1964). Because of this the region of insta-
bility x+�  is presented by all means. Thus, the special precau-
tions must be taken. 

4. ROBUST STABILITY AT THE UNSTABLE MODES 

Let us assume that the first step of the robust algorithm syn-
thesis is fulfilled and taking into account some requirement, 
the value of the discreteness interval 0 0T T ∗=  has been cho-
sen. For this value in the region x+�  that is limited by the 



 

curves suph  and lowh  the "instability interval" of the frequen-

cies sup low[ , ]ω ω� �  exists. Then at sup low
+ω ≥ ω ≥ ω� � � , there is at 

least one unstable mode with the frequency +ω� , that is, 
( , )ix t x+ +ω ⊂�� � . 

 
For damping unstable modes with the frequencies 

low sup[ , ], 1,j j k+ω ∈ ω ω =� � � , it is possible to use a modified 
PD-algorithm of the FS orientation (Krutova and Sukhanov, 
2009). Moreover in the control system the Kalman filter is 
introduced. In the filter input the coordinate ( )x t  and the 
signal r ( )M u  that is the output of the control device (16) 
model m

r ( )M u  are given. 
 
The Kalman filter outputs (Sukhanov et al., 2003) are the 
estimation of unstable modes ˆˆ ( ), , 1,j jx t x j k=�� �  that are ob-
tained on-line. The evident condition 1k n�  permits having 
the Kalman filter of lowered order that guarantees high ve-
locity and quality estimations (Sukhanov  et al., 2003). 
The estimations ˆˆ ( ), , 1,j jx t x j k=�� � , are used for forming an 

additional signal ˆˆ( , )j ju f x x= �� � �  that is additively supplemented  
to the main one (20). The additional signal structure can be 
different depending on the requirements for the process of 
unstable modes damping. One possibility of the control law 
is the discrete PD-algorithm (2). Its coefficients are chosen 
according to the method suggested in (Krutova and Sukha-
nov, 2009). 
 
Then the control law of the FS stabilization can be written as 
follows. 
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Here 0 ( )u i  is the base algorithm of the FS control in the 

form of (20); ( )ju t�  are the components of the additional 

control law by unstable modes damping; 0 1 2, ,j j jk k k  are 
the constant coefficients. Their values depend on the fre-
quencies j

+ω�  and they are chosen according to the require-

ments imposed on the control time prt  at the FS turn for pre-
scribed angle. This control time must be less than the admis-

sible value *
prt  (Krutova and Sukhanov, 2009). 

 

5. COMPUTER SIMULATION 

Let us consider the results of two examples for computer 
simulation. They are illustrated by the FS orientation system 
stability robustness with the considered two-step correction 
of the control algorithm. In the first case, the FS stabilization 
system with control algorithm (20) was considered. In the 
second case, control algorithm (21) was used. 

The parameters of object (8) were the following: 
4 2 2

010 , 263I kg m I kg m≈ ⋅ ≈ ⋅ , 1 1
1 20, 2 ; 0,7 ;s s− −ω = ω =� � , 

1 1
3 41 ; 2s s− −ω = ω =� � ; 1 10k =� , 2 9k =� , 3 410, 8k k= =� � .  

 
As a control device was flywheel with dc-motor. Its coeffi-
cient kω  that is limited by small value and the coefficients of 
algorithm (20) must be chosen so that on the plane 0( , )i Tω�  
the regions' configuration coincides with one shown in Fig. 2. 
The first step of algorithm (20) correction will be fulfilled 
and elastic oscillations stability robustness at supi hω ≥�  is 
attained. In the example under consideration we have ob-
tained:  

1 27,5; 275 ;k k s= =  0 4T s∗ = , ' 0,02k ω = . 

Figure 2 shows that 1
sup sup 0( ) 1,05h T s∗ −ω = =�  and 

1
low low 0( ) 0,38h T s∗ −ω = =� .  

Taking into account the values , 1,4i i =�ω , it is obvious that 

the elastic modes 2 2( , )x t +�� ω  and 3 3( , )x t +�� ω  are unstable ones. 
These results are verified by computer simulation (Fig. 3). So 
it is required to have the second step of the FS control algo-
rithm correction.  
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Fig. 3. Transient process at base algorithm (20). 

 
For that in control (20) two additional components are intro-
duced. They are the following 

1 01 11 1 21 1
ˆ ˆ( ) ( )k k ku t k k x k x= − + ∆� � � ; d 

2 02 12 2 22 2
ˆ ˆ( ) ( )k k ku t k k x k x= − + ∆� � � , 

where 1 2
ˆ ˆ,k kx x� � , 1 2

ˆ ˆ,k kx x∆ ∆� �  are the estimations of the first 
and second elastic modes and their first differences.  The 
suggested realization of such kind of the control algorithm 
extension 2 0 1 2( ) ( ) ( ) ( )k k k ku t u t u t u t= + +� �  and choosing  coeffi-
cients 0 1 2, , , 1, 2j j jk k k j =  optimal values takes it possible 
to get system with high damping of the elastic modes and 
robust stability with respect to these modes (Fig. 4). 
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Fig. 4. Transient processes at extended algorithm 2( )u t . 

6. CONCLUSION 

The approach suggested for ensuring the FS control orienta-
tion robust stability is distinguished by two-step correction of 
the control algorithm: first is the correction of the base algo-
rithm according to the limited value of the flywheel amplifi-
cation coefficient and after that the correction of the algo-
rithm structure. As the result we have the system that pos-
sesses high control quality and the property of the stability 
robustness. 
 
Such two-step approach to synthesis of the FS orientation 
system requires a close-loop control. But the degree of this 
meshing is not high because of the Kalman filter is used with 
a lowered order.  
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