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Abstract
We study mechanical systems controlled by “shock

impacts”, i.e., external signals of, possibly, negligible
duration and very high intensity. From a physical point
of view, the signals are due to fast vibrations of seg-
ments of a rigid body, and impactive blocking of a part
of its degrees of freedom. A mathematical idealiza-
tion of such phenomena leads to systems with discon-
tinuous velocities described by distributional (measure
differential) equations with square and affine impulses,
at that blocking of degrees of freedom formally results
in a “complementarity” constraint relating states with
the affine impulsive control. We raise two closely con-
nected issues: first, we provide a correct approximation
of the prototypical impulsive system by ordinary con-
trol processes; second, seeing that the trajectory tube of
the system occurs to lose the property of compactness,
we design its constructive relaxation (a compactifica-
tion). The final goal is to discover the limit behavior of
the system driven by the two types of impulsive con-
trols.
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1 Introduction: Mechanical Systems Controlled
by Shock Impacts and Fast Vibrations

The object of our study originates in the framework of
acceleration controlled mechanical systems and con-
tact dynamics [Aldo Bressan and Motta, 1993, Bres-
san, 2008, Bressan and Rampazzo, 1993, Bressan and
Rampazzo, 2010, Kozlov and Treshchev, 1991, Marle,
1991, May, 1987, Miller and Bentsman, 2006] and re-
lies on the mathematical apparatus of impulsive con-

trol theory [Arutyunov, Karamzin, and Lobo Pereira,
2011,Dykhta, 1990,Dykhta and Samsonyuk, 2000,Fil-
ippova, 2005, Gurman, 1972, Gurman, 1977, Karamzin
et al., 2014, Krotov, 1996, Miller, 1996, Miller and Ru-
binovich, 2003,Lobo Pereira, Silva and Oliveira, 2008,
Rishel, 1965, Zavalishchin and Sesekin, 1997, Warga,
1987]. Our model involves control external forces: the
complementary forces of frictional or stress type pro-
duced by collisions, and forces produced by frictionless
holonomic constraints.
To illustrate the model’s features, we start with two

simple but representative cases.

1.1 Inspiring Examples
Example 1.1. A double pendulum with a vibrating
pinned link and an impactively blockable joint. Con-
sider a control double pendulum with the links of unit
length and unit mass moving in the vertical plane, in
the gravity field. The system configuration is repre-
sented by the angular coordinates φ = (φ1, φ2) of the
links. The system has two degrees of freedom associ-
ated with φ1,2. In the Lagrangian formalism, the time
evolution of the system is described by a standard La-
grange equation with the Lagrangian L = K − P , the
total kinetic energy K, the total potential energy P , and
the generalized vector of external forces F :

d

dt

(
∂L

∂φ̇

)
− ∂L

∂φ
= F. (1)

In local coordinates of the inertial reference system
(φ1, φ2, φ̇1, φ̇2), being the angular coordinates and the
angular velocities φ̇1,2

.
= d

dtφ1,2, the terms K and P

are given by K = φ̇2
1 + 1/2 φ̇2

2 + φ1φ2 cos(φ1 − φ2),
and P = −g (2 cosφ1 + cosφ2), where g is the accel-
eration due to gravity.
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Consider the behavior of the angular position φ2, and
assume that it can be artificially affected by signals of
two types, namely: by choosing the angle φ1 as a de-
sired continuous function of time, and by instantaneous
blocking/releasing the angle φ1−φ2 between the links.
The dynamics of the control mechanical system then
takes the form:

(1 + sin2(φ1 − φ2)) φ̈2 − 2 sin(φ1 − φ2) φ̇
2
1

−1/2 sin 2(φ1 − φ2) φ̇
2
2

+g (sinφ2−sinφ1 cos(φ1 − φ2)) = F, (2)

and the impactive blocking/releasing principle is per-
formed by the “mixed” constraint

φ̇2(t) = 0 |F |-a.e. (3)

relating the state φ̇2, and the shock control F . The
derivative Ḟ is here regarded in a generalized sense,
namely, as a distribution or a Lebesgue-Stieltjes mea-
sure induced by the function F of bounded variation,
and “-a.e.” means “almost everywhere with respect to
a measure”. Recall that the mapping t 7→ φ1(t) is the
input signal, but not a trajectory of the system, and note
that the derivative φ̇ participates in the equation of mo-
tion as a quadratic term.
Example 1.2. A telescopic arm with a blockable de-
gree of freedom and control vibrations. Consider a
telescopic manipulator wherein a unit-mass point slides
without friction along a massless pinned link. The
length h of the link is controlled by setting the angle
position φ of the link as a desired function of time, and
by instantaneous blocking/releasing the linear motion
of the point mass. This results in the control system

ḧ− h φ̇2 = −F, (4)
ḣ(t) = 0 F -a.e. (5)

Here, F is an impulsive frictional force.

1.2 Impact Dynamics and Distributional (Mea-
sure Differential) Equations

Consider Lagrangian dynamical system (1). Follow-
ing [Brogliato, 2000], a generalized version of this
model – admitting non-smooth velocities – takes the
form

M(q) q̈ − h(q, q̇) = f +B(q)u. (6)

Here, the force F is decomposed into a uncontrolled
external force f and a control force u. The (symmetric,
positive definite) matrix M = M(q), called a general-
ized mass matrix, is related with (1) by M = ∂2

q̇q̇K.

The function h = h(q, q̇) includes all finite smooth
forces (spring, damper, centripetal, gyroscopic, corio-
lis etc.) and is defined by h = ∂2

q̇qK − ∂qL. The linear
map B = B(q) represents directions of control forces.
For the case of discontinuous velocities, which is typ-

ical in impact mechanics, equation (6) has to be further
generalized to the form [Moreau, 1966]

M(q) d(q̇)− h(q, q̇) dt = π(dt) +B(q)µ(dt), (7)

where π and µ are distributions (measures), represent-
ing the generalized uncontrolled and control external
forces, respectively.

2 Impulsive Control Systems with Square and
Mixed-Constrained Affine Impulses

Now we focus on the mathematical formalism be-
hind the mechanical systems with blockable degrees of
freedom and vibrating controls discussed in Section 1.
For ease of presentation, we will consider the case of
scalar-valued input signals.

2.1 Complementarity Problem for Impulsive Con-
trol Systems

Given T,M1,M2 > 0, x0 ∈ Rn, and functions
fi, g : Rn → Rn, i = 0, 1, 2, defined on a finite time
interval T .

= [0, T ], consider the following control dis-
tributional equation:

ẋ = f0(x) + f1(x)w + f2(x)w
2 + g(x)V̇ ,

x(0−) = x0.
(8)

Here, states are x(t) ∈ Rn, x(t−) denotes the left one-
sided limit of a function x at a point t, and inputs are of
different types: (i) w : T → R are Borel measurable
L2-functions, and (ii) V ∈ BV

.
= BV +(T ,R), i.e.,

right continuous functions T → R with bounded vari-
ation. The inputs are subject to the standard “energetic”
constraints:

|V̇ |(T ) ≼ ν(T ) 6 M1, ∥w∥2L2
6 M2. (9)

In what follows, V̇ is regarded as a measure, i.e.,
V̇

.
= µ ∈ C∗, where C∗ is the dual of the space C

of continuous functions. In (9), |V̇ | .
= |µ| denotes the

total variation of the measure |µ|, ν is yet another non-
negative Lebesgue-Stieltjes measure to be chosen by
the controller, i.e., ν is an extra control, ≼ is a usual
order on the set of measures, and ∥ · ∥L2 denotes the
norm in L2.
Introduce a generalized form of constraints (5), (3):

W−
(
x(t−)

)
+W+

(
x(t)

)
= 0 ν-a.e. on T , (10)
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where W± : Rn → R are certain nonnegative continu-
ous functions. Note that condition (10) is a generaliza-
tion of orthogonality in L2, and it establishes a certain
complementarity of states with respect to the control
measure ν.

2.2 Understanding of the Affine Impulsive Control
and the Distributional Equation

We make standard assumptions (H) about the Lips-
chitz continuity and sublinear growth of the functions
fi, i = 0, 1, 2, and g.
Following [Arutyunov, Karamzin, and Lobo Pereira,

2011, Arutyunov, Karamzin, and Lobo Pereira, 2010,
Karamzin, 2006], by an impulsive control we mean a
collection ϑ

.
= (µ, ν, {vτ}τ∈Dν ) , wherein the mea-

sures µ = |V̇ | and ν meet (9), and {vτ}τ∈Dν , Dν
.
=

{τ ∈ T : |µ|(T ) ̸= 0}, is a family of Borel measur-
able functions vτ : Tτ

.
= [0, Tτ ] → Rm, parameterized

by atoms of ν, such that

|vτ (θ)| = 1 λ-a.e. on Tτ , (11)∫
Tτ

vτ (θ) dθ = µ({τ}) (12)

for all τ ∈ Dν . Here, Tτ
.
= ν({τ}). Functions vτ are

“controls of jumps” [Arutyunov, Karamzin, and Lobo
Pereira, 2011].
Let Θ be the set of impulsive controls satisfying (9),

(11), (12), and W the set of Borel measurable L2-
functions T → R satisfying (9), and P = Θ×W .
Denote f(x,w) .

= f0(x)+f1(x)w+f2(x)w
2. Given

an input ϱ = (ϑ
.
= (µ, ν, {vτ}), w) ∈ P , by a solution

to the Cauchy problem (8) under the control input ϱ,
we mean a function x ∈ BV +(T ,Rn) satisfying, for
each t ∈ T , the following integral relation:

x(t) = x0 +

∫ t

0

f(x,w) dθ +

∫ t

0

g(x)µc(dθ)

+
∑
τ∈Dν

[
x(τ)− x(τ−)

]
. (13)

Here, µc
.
= µac + µsc is the continuous component

of the Lebesgue decomposition of measure µ being the
sum of its absolutely continuous and singular continu-
ous parts µac and µsc, and the integral with respect to
µc is understood in the Lebesgue-Stieltjes sense; jump
exit points x(τ) of a function x at points τ ∈ Dν are
defined as x(τ) = κτ (Tτ ), where κτ is a Carathéodory
solution of the limit control system:

d

dς
κ(ς) = g

(
κ(ς)

)
vτ (ς), κ(0) = x(τ−). (14)

Under assumptions (H), the existence and uniqueness
of a solution x[ϱ] to (13), (14) for any input ϱ ∈ P is

guaranteed by the general theorem stated in [Miller and
Rubinovich, 2003].
A collection σ = (x, ϱ) with x = x[ϱ], ϱ = (ϑ =
(µ, ν, {vτ}), w) ∈ P is called an impulsive control pro-
cess. We have to assume that the set {σ = (x, ϱ) : x =
x[ϱ], ϱ ∈ P} is nonempty.

2.3 Quadratic Impulses. Relaxation of the Dy-
namics

In the model, “affine impulses”, performed by the dis-
tribution V̇ , are postulated (due to the mentioned me-
chanical origin, see [Moreau, 1966]). At the same time,
the values of the term w2 with ∥w∥2L2

≤ M are not uni-
formly bounded. One can consider sequences {wn} of
controls such that the squares w2

n tend, in the sense of
distributions, to a Dirac “point-mass” measure (a “δ”-
type distribution). Such signals are said to be quadratic
impulsive controls. They produce extra discontinu-
ities of state solutions, in addition to the discontinuities
caused by affine impulses. As we will see below, the
interplay between the two impulsive controls of differ-
ent natures results in a rather sophisticated behavior of
the system state in the phase of jump.
The trajectory tube of measure-driven system (13),

(14) is not compact in the strong topology of BV ,
and therefore it requires a relaxation in a certain weak
topology, and the relaxation should correlate with con-
straint (10). In the following section we design such a
relaxation in the weak* topology of BV , and give its
constructive representation by means of a discontinu-
ous time reparameterization of solutions to a terminally
constrained ordinary differential inclusion. For this, we
first need to define a proper relaxation of solutions to
system (13), (14), (10).

3 Approximation and Relaxation of the Comple-
mentarity Property

The following definition establishes ε-
complementarity of a process with respect to its
small weak* perturbation.

Definition 3.1. Given ε > 0, an impulsive control pro-
cess σ = (x, ϱ) is said to be an ε-approximate solu-
tion of the complementary system (13), (14), (10), iff
there exists another process σ = (x̃, ϱ̃), x = x[ϱ̃],
ϱ̃ = (ϑ̃ = (µ̃, ν̃, {ṽτ}), w) ∈ P , such that the fol-
lowing relations hold:

1. (x̃, Fν̃) belongs to an ε-neighborhood of (x, Fν)
in the weak* topology of BV , i.e.,

∥∥(x, Fν)(t)− (x̃, Fν̃)(t)
∥∥ ≤ ε

for all t ∈
(
[0, T ) \Dν

)
∪ {T}.

(15)
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2. The ε-“ordering” condition

∫
T
Q(Fν , Fν̃) dνc +

∫
T
Q(Fν , Fν̃) dν̃c +∑

τ∈Dν

Q
(
Fν(τ), Fν̃(τ)

)
ν({τ}) +

∑
τ∈Dν̃

Q
(
Fν(τ), Fν̃(τ)

)
ν̃({τ}) ≤ ε (16)

is met. Here, Fν and Fν̃ are the distribution
functions of the measures ν and ν̃, and Q =
Q(η+, η−) is an arbitrary fixed continuous non-
negative function R2

+ → R vanishing only on the
set {(η+, η−) ∈ R2

+ : η− ≤ η+}.
3. The ε-complementarity condition

∫
T
W−(x̃) dν +

∫
T
W+(x) dν̃ ≤ ε (17)

is satisfied.
4. The relation with the quadratic control

∫
T

∥∥(x, Fν)− (x̃, Fν̃)
∥∥ w2 dt 6 ε (18)

holds true.

The role of ε-solutions can be played by ordinary
control processes (x, v, w) = (x, ϱ = (ϑ,w)) with
ϑ = (µ, ν), µ(dt) = v dt, v ∈ L∞, ν = |µ|. At
the same time, simple examples show that the comple-
mentarity condition (10) generically does not hold for
ordinary control processes, even approximately.

Theorem 3.1. Any solution to (13), (14), (10) can be
approximated in the weak* topology of BV by ordinary
control processes. In other words, for any ϱ ∈ P , there
exists a sequence (x, v, w)ε such that xε ⇁ x[ϱ] as
ε → 0. Here and further, ⇁ indicates the convergence
in the weak* topology of BV .

The proof is similar to [Goncharova and Staritsyn,
2017].

Let X denote the set of functions x ∈ BV +(T ,Rn)
such that there exists a sequence {σε}ε>0 of impulsive
control processes σε = (x, ϱ)ε with the following prop-
erties: For any ε > 0, σε is an approximate ε-solution
of (13), (14), (10) in the sense of Definition 3.1, and
xε ⇁ x as ε → 0.

3.1 Space-Time Transformation
Consider a new, “extended” time interval S .

= [0, S],
S > T , and introduce on S the following ordinary con-

trol system (called the reduced system):

d

ds
ξ = α2,

d

ds
y± = α2f0(y±) + αβf1(y±)

+β2f2(y±) + ω± g(y±), (19)
d

ds
η± = |ω±|,

d

ds
ζ = β2, (20)

d

ds
ι = (α2 + β2)

[
∆±η + |∆±y|

]
+ |ω+|W−(y−) + |ω−|W+(y+) +Q(η), (21)

y±(0) = x0, (ξ, η, ζ, ι)(0) = 0 ∈ R5, (22)

ξ(S)= T, ∆±(y, η)(S)= 0∈Rn+1, ι(S)= 0, (23)
η+(S) 6 M1, ζ(S) 6 M2, (24)

u
.
= (α, β, ω) ∈ U. (25)

Here, s is new time variable; U
.
= U(S) is the

set of controls u = (α, β, ω) with ω
.
= (ω+, ω−),

α, β, ω± : S → R, being Borel functions such that
α(s) > 0, α2(s) + β2(s) + |ω+(s)| + |ω−(s)| = 1
λ-a.e. on S. The new states are x

.
= (ξ, y, η, ζ, ι) ∈

R2n+5, where y
.
= (y+, y−) and η

.
= (η+, η−),

ξ(s), η±(s), ζ(s), ι(s) ∈ R+, y±(s) ∈ Rn. The op-
eration ∆± applied to a vector c

.
= (c+, c−) ∈ R2r

defines the vector c+ − c− ∈ Rr, and ∆∓ = −∆±.
By x[u] we denote the Carathéodory solution of sys-

tem (20)–(22) on S, under control u ∈ U.

Given ϱ ∈ P , denote µ̂
.
= λ+ ∥w∥2L2

+ 2ν and intro-
duce a strictly increasing function Υ : T → [0, µ̂(T )]
as follows: Υ(t) = Fµ̂(t), t ∈ T . Let υ denote the
inverse of Υ.
The following result provides an embedding of the set

of solutions to the complementarity system (13), (14),
(10) into the trajectory tube of system (19)–(25).

Theorem 3.2. Let ϱ ∈ P be such that the solution
x = x[ϱ] of (13), (14) meets condition (10). Then,
there exist a real S ≥ T and a control u ∈ U(S) such
that the respective solution x = (ξ, y = (y+, y−), η =
(η+, η−), ζ, ι)[u] of control system (20)–(22) satisfies
the right-point constraints (23), (24), and

y− ◦Υ = y+ ◦Υ = x, υ = ξ. (26)

Proofs of all the assertions in this section are rather
technical and will appear in our forthcoming paper.
They employ a combination of arguments similar to
[Goncharova and Staritsyn, 2012] and [Goncharova
and Staritsyn, 2017].
The inverse transform is performed as stated in the

following

Theorem 3.3. Assume that S ≥ T and u ∈ U(S)
are such that the solution x

.
= (ξ, y = (y+, y−), η =
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(η+, η−), ζ, ι)[u] of system (19)–(22) satisfies con-
straints (23), (24). Let (x, V, π) ∈ BV +(T ,Rn+2) be
defined by the composition

(x, V, π) = (y+, η+, ζ) ◦ Ξ on T , (27)

where Ξ : T → S is given by Ξ(t) = inf{s ∈ S :
ξ(s) > t}, t ∈ [0, T ), Ξ(T ) = S. Set ν .

= dV ,
ϖ

.
= dπ (by definitions the measures are nonnega-

tive, and ν(T ) 6 M1, ϖ(T ) 6 M2). Then, there
exist a scalar Borel measure µ with |µ| ≼ ν and
|µ|c = νc; a Borel measurable function l : T → R

with
∫ t

0

l2 dθ = ϖac([0, t]), and a family {(v, w)τ}

of Borel functions vτ : Ťτ → R, wτ : Ťτ → R+,
parameterized by atoms of the measure µ̌

.
= ν + µ2

(here Ťτ
.
= [0, Ťτ ], Ťτ

.
= µ̌({τ})) and satisfying the

relations∫
Ťτ

vτ (θ)dθ = µ({τ}),
∫
Ťτ

wτ (θ)dθ = ϖ({τ}),

uτ + |vτ | = 1 λ-a.e. over Ťτ ,

such that, for all t ∈ T , x meets condition (10) with the
measure ν and satisfies the following measure differen-
tial equation:

x(t) = x0 +

∫ t

0

(
f0(x) + f1(x) l

)
dθ

+

∫ t

0

f2(x)ϖc(dθ) +

∫ t

0

g(x)µc(dθ)

+
∑
τ∈Dµ̌

[
x(τ)− x(τ−)

]
.

Here, x(τ) = κτ (Ťτ ), τ ∈ Dµ̌, where κτ solves the
Cauchy problem

d
dθκ = f2(κ) vτ + g(κ)wτ , κ(0) = x(τ−). (28)

Now we establish a relation between the trajectory
relaxation X and the reduced system (19)–(25). Let
F = F(x,u) denote the right-hand side of system
(19)–(22). Consider the relaxed dynamics

dx(s)

ds
∈ co {F(x,u)| u ∈ U} . (29)

Here, coA denotes the closed convex hull of a set A.
As is stated below, X coincides with the trajectory tube
of (29), (22)–(24), up to a discontinuous time change.

Theorem 3.4. 1) For any x ∈ X, there exist S ≥
T and a solution x = (ξ, y = (y+, y−), η =

(η+, η−), ζ, ι) of terminally constrained differential in-
clusion (29), (22)–(24), such that relations (26) hold.
2) Let x = (ξ, y = (y+, y−), η = (η+, η−), ζ, ι) be

a solution to the Cauchy problem for differential inclu-
sion (29) on a time interval S = [0, S], S ≥ T , such
that conditions (23), (24) hold. Define x by formula
(27). Then, x ∈ X.

The following assertion generalizes Theorem 3.1.

Theorem 3.5. Any x ∈ X can be approximated in the
weak* topology of BV by ordinary control processes.

4 Limit Behavior of Extended System
On condition that the affine and quadratic impulses

occur at different instants, constraint (10) remains in
force. In general case, there may arise multiple jumps
at the same time, produced by different measures. In-
deed, suppose, for example, that W−

(
x(τ−)

)
> 0,

but τ is an atom of ϖ such that the respective trajec-
tory κτ of limit system (28) under vτ = 0 reaches
the set Z−

.
= {x ∈ Rn : W−(x) = 0} at a

certain moment θ within the “fast time” interval Tτ ,
i.e., W

(
κτ (θ)

)
= 0. Assumed further that the set

Z+
.
= {x ∈ Rn : W+(x) = 0} is reachable from the

position κτ (θ) along a trajectory of (28) with a nontriv-
ial control vτ , one can find another control (v, w)τ with
vτ = 0 that brings us back to Z−, and so on. We ob-
serve that jumps of a state are decomposed into a series
of subjumps caused by different impulsive actions, and
the subjumps corresponding to the affine impulses en-
joy the property given by (10), whereas the total jump
does not satisfy this condition anymore.
The limit form of (10) is exhibited by the following

Theorem 4.1. Given x ∈ X, let {σε
.
= (xε, ϱε)}ε>0,

ϱε
.
= (ϑε, wε), ϑε = (µε, νε, {vτε}), be its approxi-

mation in the sense of Definition 3.1, given by Theo-
rem 3.5, and x

.
= (ξ, y = (y+, y−), η = (η+, η−), ζ, ι)

be a solution to the constrained differential inclusion,
presented by Theorem 3.4. Denote by (ν,ϖ) a weak*
limit of the sequence {(νε, ∥wε∥2L2

)}ε>0 and define

vτ
.
=

2 d
ds ζ

d
ds (2ζ+η++η−)

◦sτ , wτ
.
=

d
ds (η++η−)

d
ds (2ζ+η++η−)

◦sτ , on

Ťτ , where sτ
.
= θ−1

τ and θτ (s)
.
= [η+(s)+η−(s)]/2+

ζ(s)− µ̌([0, τ)), s ∈ Ξτ
.
= [Ξ(τ−),Ξ(τ)].

There exists a subset Rτ ⊆ supp vτ \ suppwτ

(“supp” stands for the support of a function) being
the union ∪i∈IτΩ

i
τ of disjoint open intervals Ωi

τ
.
=

(θτ , θ τ )
i (the index set Iτ is at most countable), such

that, for any τ ∈ Dν , it holds:

W−
(
x(t)

)
=W+

(
x(t)

)
=0 νc-a.e. on T ,

W−
(
κτ (θ)

)
=W+

(
κτ (θ)

)
=0 λ-a.e. supp vτ\ Rτ ,

W−
(
κτ (θ

i
τ )
)
=W+

(
κτ (θ

i

τ )
)
=0 ∀i ∈ Iτ .
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In other words, the complementarity condition (10)
does hold during the phase of jumps, for “fast motions”
produced by affine impulses.

5 Example 1.2: Revisited
To illustrate the designed trajectory extension, we

present a relaxed form of the control mechanical sys-
tem figuring in Example 1.2. Conditions (2), (3) have
to be rewritten as

ḣ = v, dv = hϖ(dt)− ν(dt),

v(t) = 0 ν-a.e.,

where ν and ϖ are the linear and quadratic control
measures, respectively, and the angle φ satisfies the re-
lation φ̇ =

(
Ḟϖac

)1/2.
The interaction between the two controls is as fol-

lows: by changing the angle φ, we produce a centrifu-
gal force, which shifts the point mass along the link,
and this motion can be instantaneously stopped by the
“frictional” force ν.
Let us comment on the part played by the quadratic

impulse control. Given an initial state (h0, v0, φ0),
assume that ϖ is nontrivial, but ϖac = 0. Then,
φ(t) ≡ φ0, i.e., the angular coordinate stays in rest.
At the same time, the states (h, v) do evolve. For in-
stance, if ϖ = ϖsc, we get that v = v0 + Fϖsc , and
h = h0 +

∫
v are increasing functions. This example

reveals a singular continuous behavior. Physically, this
is a manifestation of fast vibrations of invisibly small
magnitude.

6 Conclusion
The developed mathematical tools can be used for an-

alytical and numerical investigation of optimal control
problems for the addressed class of mechanical sys-
tems. The obtained results can be easily generalized
to the case of vector-valued control inputs.
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