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Abstract
For distributed and discrete phase systems with vec-

tor nonlinearities the problem of cycle-slipping is de-
veloped. The method of a priori integral estimates and
Lyapunov direct method are combined with a special
technique. As a result certain frequency-domain esti-
mates for the phase error are obtained.
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1 Introduction
In this paper the problem of cycle-slipping for phase

control systems is developed. For the first time this
problem was set by J.J.Stoker [Stoker, 1950] for mathe-
matical pendulum which underwent the resistance pro-
portional to the square of its speed.
The problem proved to be rather important for vari-

ous engineering systems, i.e. for phase locked loops,
electric machines, synchronous tracking systems. The
Stoker problem for differential equations of first and
second order was investigated in a number of pa-
pers [Viterbi,1963],[Tausworthe, 1967],[Tausworthe,
1972], [Bozzoni, Marchetti, Mengali and Russo, 1970],
where several formulae for mean cycle-slip time were
obtained. In [Tausworthe, 1972] an asymptotic formula
for differential equations of higher order was also of-
fered.
For multidimensional phase control systems with a

scalar periodic function the problem of cycle-slipping
was studied in [Yershova, Leonov, 1983]. In this

paper by means of Lyapunov direct method com-
bined with special Bakaev-Guzh technique [Koryakin,
Leonov, 1976] and Yakubovich-Kalman frequency the-
orem [Yakubovich, 1973] frequency-domain estimates
for the number of slipped cycles were established. In
monographs [Leonov, Reitmann and Smirnova, 1992],
[Leonov, Smirnova, 2000] the frequency-domain the-
orems of [Yershova, Leonov, 1983] were extended to
phase systems with distributed parameters described
by Volterra integro-differential equations. In papers
[Smirnova, Shepeljavyi and Utina, 2003],[Smirnova,
Shepeljavyi and Utina, 2006] the ideas and methods
of [Yershova, Leonov, 1983] were applied to discrete
phase control systems described by difference equa-
tions. All frequency-domain theorems were formu-
lated in terms of transfer function of the linear part of
control system. They contain varying parameters. A
frequency-domain theorem is the more effective, the
more varying parameters it contains.

In this paper phase systems with vector control func-
tion are treated. We consider here systems described
both by Volterra integro-differential equations and
by difference equations. For phase Volterra equa-
tions we present an extension of the theorems proved
in [Leonov, Reitmann and Smirnova, 1992],[Leonov,
Smirnova, 2000] to the case of vector control function.
The frequency-domain theorems are now formulated
by means of the transfer matrix of the linear part of
a control system. They contain matrix varying param-
eters. Just the same, for difference phase systems with
vector control function matrix analogues of the theo-
rems from [Smirnova, Shepeljavyi and Utina, 2006] are
obtained.



2 Phase control systems with distributed parame-
ters

Consider a system of integro-differential Volterra
equations

σ̇(t) = a(t) + Rϕ(σ(t− h))−
−

t∫
0

γ(t− τ)ϕ(σ(τ)) dτ (t > 0). (1)

Here σ = ||σj ||j=1,...,l, a = ||aj ||j=1,...,l,
ϕ(σ) = ||ϕj(σj)||j=1,...,l are vector-functions, R
is an l × l-matrix, γ = ||γij ||i,j=1,...,l is an l × l-
matrix-function and h is a nonnegative number. The
initial condition for system(1) is as follows

σ(t)|t∈[−h,0] = σ0(t). (2)

Every function ϕj(σj) (j = 1, ..., l) is C1, ∆j-
periodic and has finite number of simple zeros on
[0, ∆j). We suppose also that

∆j∫

0

ϕj(σ) dσ < 0 (j = 1, ..., l). (3)

Let α1j , α2j be such numbers that

α1j ≤ dϕj(σ)
dσ

≤ α2j for all σ ∈ R, (4)

with α1j < 0 < α2j . Let Ai = diag{αi1, ..., αil}
(i = 1, 2).
We assume that functions aj and γij (i, j = 1, ..., l)

aquire the following properties:
1) aj is C[0, +∞), aj(t) → 0 as t → +∞;
2) there exist such a positive constant r that functions
aj(t)ert, γij(t)ert are L2[0, +∞).
Let us introduce the transfer matrix of (1) from the

input ϕ to the output (−σ̇)

χ(p) = −Re−ph −
+∞∫

0

γ(t)e−pt dt (p ∈ C). (5)

Let us introduce also several notations (j = 1, 2, ..., l):

Ω(1)
j = {σj ∈ [0, ∆j) : ϕj(σj) > 0}, (6)

Ω(2)
j = {σj ∈ [0, ∆j) : ϕj(σj) < 0}, (7)

Γj =
∫

Ω
(2)
j

|ϕj(σ)| dσ, (8)

γj =
∫

Ω
(1)
j

ϕj(σ) dσ, Rj =
2Γjγj

Γj + γj
, (9)

ν
(i)
j (æ, k, Q) =

γj−Γj+
(−1)i

kæj
(Q+

∑l
q=1,q 6=j æqRq)

γj+Γj
,

(i = 1, 2)
(10)

where æ = diag{æ1, ..., æl} with æj > 0
(j = 1, ..., l), Q ∈ R, k is a natural number.
Consider an arbitrary solution of (1), (2) now. Let

ξ(t) = ϕ(σ(t)) and µ(t), σ0(t) be defined by the for-
mulae

µ(t) =





0, t < 0,
t, 0 ≤ t ≤ 1
1, t > 1,

(11)

σ0(t) = a(t) + (1− µ(t− h))Rξ(t− h)−
−

t∫
0

(1− µ(τ))γ(t− τ)ξ(τ)) dτ

(σ0 = ||σ0j ||j=1,...,l).

(12)

Note that functions σ̇j , ξj , ξ̇j are bounded on R+

and aj(t), γij(t) are L1[0,+∞) ∩ L2[0, +∞). Let

|σ̇j | ≤ σ̄j , |ηj | < ϕ̄j , |η̇j | < ϕ̄1j ,
∞∫
0

a2
j (t) dt = āj ,

∞∫
0

γ2
ij(t) dt = γ̄ij (i, j = 1, ..., l). Let us introduce l×l-

diagonal matrix parameters æ, δ, τ and define the func-
tions

f1(t,æ, η, τ) =
t∫
0

{(1− µ)σ̇∗æξ+

+(1− µ2)ξ∗ηξ + ( ˙̂
µξ)∗τ(µ̂ξ)− ξ̇∗τξ+

+( ˙̂
µξ − ξ)τA2σ̇ + σ̇∗A1τ( ˙̂

µξ − ξ)}dt,

(13)

f2(t, æ, τ) =
t∫
0

{µσ∗0æξ + 2σ̇∗εσ0−

−2σ∗0A1τA2σ̇ + σ∗0A1τ
˙̂

µξ + ( ˙̂
µξ)∗τA2σ0}dt,

(14)
where the symbol ∗ is used for Hermitian conjugation.
Both functions are bounded. So

|f1(t,æ, η, τ) + f2(t,æ, τ)| < Q(æ, η, τ), (15)

where Q may be calculated by means of σ̄j , ϕ̄j , ϕ̄1j ,
āj , γ̄ij (i, j = 1, ..., l).
Theorem 1. Suppose there exist such positive definite

matrices æ = diag{æ1, ..., æl} ε = diag{ε1, ..., εl},



η = diag{η1, ..., ηl}, τ = diag{τ1, ..., τl} and such
positive integers m1,m2, ...,ml that the following con-
ditions are true:
1) for all ω ∈ R the matrix

Π(ω) ≡ <e{æ∗χ(iω)
+(A1χ(iω) + iωEl)∗τ(iωEl + A2χ(iω))}
−χ∗(iω)εχ(iω)− η (i2 = −1),

(16)

is positive definite1;
2)

4εjδj > æ2
j (ν

(i)
j )2(æ,mj , Q) (i = 1, 2; j = 1, 2, ..., l).

(17)
Then for any solution of (1), (2) the estimates

|σj(t)− σj(0)| < mj∆j (t > 0, j = 1, ..., l) (18)

are true.
Proof of theorem 1. Let T > 0 and σ(t) be an arbi-

trary solution of (1), (2). Let us introduce the functions

ξT (t) =
{

µ(t)ξ(t), t < T,
µ(t)ξ(T )ec(T−t), t ≥ T (c > 0),

(19)

σT (t) = RξT (t− h)−
t∫
0

γ(t− τ)ξT (τ)) dτ

(σT = ||σTj ||j=1,...,l).
(20)

Note that

σ̇(t) = σ0(t) + σT (t) for t ∈ [0, T ]. (21)

The properties of matrix-functions ϕ, a and γ imply
that σTj , ξTj , ξ̇Tj ∈ L2[0, +∞) ∩ L1[0, +∞). Con-
sider the functional

ρT =
∞∫
0

{σ∗T æξT + ξ∗T ηξT +

+(A1σT − ξ̇T )∗τ(ξ̇T −A2σT ) + σ∗T εσT } dt.

(22)

Denote by F [f ](iω) the Fourier transform for a func-
tion f ∈ L1[0,+∞) ∩ L2[0, +∞). By means of Par-
seval equality we have

ρT = 1
2π

+∞∫
−∞

{F ∗[σT ]æF [ξT ] + F [ξT ]∗ηF [ξT ]+

+(A1F [σT ]− F [ξ̇T ])∗τ(F [ξ̇T ]−A2F [σT ])+
+F [σT ]∗εF [σT ]} dt,

(23)

1Hereafter <eH = 1/2(H + H∗) for l× l-matrix H

Since

F [σT ](iω) = −χ(iω)F [ξT ](iω) (24)

and

F [ξ̇T ](iω) = iωF [ξT ](iω) (25)

we have

ρT = − 1
2π

+∞∫
−∞

F ∗[ξT ](iω)Π(ω)F [ξT ](iω) dω.

(26)
In virtue of condition 1) of the theorem

ρT < 0. (27)

Let us represent the functional ρT as the following
sum:

ρT = IT + JT − f1(T, æ, η, τ)− f2(T, æ, τ)+
+f3(T, ε, τ) + f4(T, æ, ε, η, τ),

(28)
where

IT =
T∫
0

{σ̇∗æξ + ξ∗ηξ + σ̇∗εσ̇} dt, (29)

JT =
T∫
0

{(A1σ̇ − ξ̇)∗τ(ξ̇ −A2σ̇)} dt, (30)

f3(T, ε, τ) =
∞∫
T

{σ∗T (ε−A∗1τA2)σT } dt+

+
T∫
0

{σ∗0εσ0} dt,

(31)

f4(T, æ, ε, η, τ) =
∞∫
T

{σ∗T æξT + ξ∗T ηξT +

+σ∗T A∗1τ ξ̇T − ξ̇∗T τ ξ̇T + ξ∗T τA2σT } dt.

(32)

Note that f3(T, ε, τ) > 0. Note also that

JT =
∑l

j=1

σj(T )∫
σj(0)

τj(α1j − ϕ′j(σ))(ϕ′j(σ)− α2j) dt,

(33)
and so in virtue of (4)

JT > 0. (34)



Then it follows from (27) that for all T > 0

IT < f1 + f2 − f4. (35)

Hence

IT < Q + ε0 for all T > 0, (36)

where ε0 can be made as small as we wish by the choice
of number c.
Let us introduce the functions

Φ(i)
j (σ) = ϕj(σ)− ν

(i)
j (æ,mj , Q + ε0)|ϕj(σ)|,

(37)

(i = 1, 2; j = 1, ..., l). (38)

The functional IT can be represented as follows:

IT =
∑l

j=1 æj

σj(T )∫
σj(0)

Φ(i)
j (σ) dσ +

∑l
j=1

T∫
0

Z
(i)
j (t) dt,

(39)
where

Z
(i)
j (t) = æj σ̇jϕj(σj) + εjσ

2
j +

+ηjϕ
2
j (σj)− æjΦ

(i)
j (σj)σ̇j (i = 1, 2).

(40)

For the functions Z
(i)
j (t) (i = 1, 2, j = 1, ..., l) we

have

Z
(i)
j (t) = εj σ̇

2
j + ηjϕ

2
j (σj) + æjν

(i)
j |ϕj |σ̇j . (41)

where ν
(i)
j = ν

(i)
j (æ,mj , Q + ε0). According the con-

dition 2) of the theorem the functions Z
(i)
j (t) are posi-

tive definite if ε0 is small enough. So

l∑

j=1

T∫

0

Z
(i)
j (t) dt > 0 (i = 1, 2). (42)

Suppose now that there exists such a mo-
ment t1 > 0 that for j = k1, k2, ..., kr(1 ≤
ki ≤ l) σj(t1) = σj(0) + mj∆j though
σj(t) < σj(0) + mj∆j for t ∈ [0, t1). For all
j 6= ki (i = 1, 2, ..., r) σj(t1) < σj(0) + mj∆j . Then
for each j = k1, k2, ..., kr we have

æj

σj(t1)∫
σj(0)

Φ(1)
j (σ) dσ =

= æjmj

∆j∫
0

Φ(1)
j (σ) dσ = æjmj(

∆j∫
0

ϕj(σ) dσ−

−ν
(1)
j (æ,mj , Q + ε0)

∆j∫
0

|ϕj(σ)| dσ) =

= Q + ε0 +
∑l

q=1,q 6=j æqRq.
(43)

For each j 6= k1, k2, ..., kr we have

æj

σj(t1)∫
σj(0)

Φ(1)
j (σ) dσ = æj(

σj(t1)∫
σj(0)

ϕj(σ) dσ−

−ν
(1)
j (æ,mj , Q + ε0)

σj(t1)∫
σj(0)

|ϕj(σ)| dσ).
(44)

Let σj(t1) = σj(0) + m0j∆j + βj , where m0j < mj

and βj ∈ [0, ∆j). Then

σj(t1)∫
σj(0)

ϕj(σ) dσ = m0j

∆j∫
0

ϕj(σ) dσ +
βj∫
0

ϕj(σ) dσ =

= m0j(γj − Γj) + γ′j − Γ′j ,
(45)

where

γ′j =
∫

(0,βj)∩Ω
(1)
j )

ϕj(σ) dσ,Γ′j =
∫

(0,βj)∩Ω
(2)
j )

|ϕj(σ)| dσ,

(46)
and

σj(t1)∫

σj(0)

|ϕj(σ)| dσ = m0j(γj + Γj) + (γ′j + Γ′j). (47)

We have

æj

σj(t1)∫
σj(0)

Φ(1)
j dσ > æj(γ′j − Γ′j − γj−Γj

γj+Γj
(γ′j + Γ′j)) =

= 2æj(Γjγ′j−Γ′jγj)

γj+Γj
> −æjRj .

(48)
Consequently, in this case

IT >
∑l

j=1 æj

σj(T )∫
σj(0)

Φ(1)
j (σ) dσ > r(Q + ε0)+

+r
∑l

q=1 æqRq −
∑l

q=1 æqRq > (Q + ε0).
(49)

But this inequality contradicts (36). So our assumption
is false and

σj(t) < σj(0) + mj∆j (50)

for all t > 0 and all j = 1, 2, ..., l.
Just in the similar way by means of functions Φ(2)

j (σ)
we can prove that for all t > 0 and all j = 1, 2, ..., l

σj(t) > σj(0)−mj∆j . (51)

Theorem 1 is proved.



3 The discrete phase control system
Consider a multidimensional discrete phase system

z(n + 1) = Az(n) + Bξ(n),
σ(n + 1) = σ(n) + C∗z(n) + Rξ(n),

ξ(n) = ϕ(σ(n)), n = 0, 1, 2, . . .
(52)

Here A,B, C, R are real matrices of order (m×m),
(m× l), (m× l), (l × l) respectively. We suppose that
the pair (A,B) is controllable, the pair (A, C) is ob-
servable and all eigenvalues of A lie inside the open
unit circle. Vector function ϕ(σ) satisfies all the as-
sumptions of the previous section. We shall also use
here all the designations concerning ϕ(σ).
In this section we shall demonstrate for discrete sys-

tem (52) several assertions similar to theorem 1. They
are proved by Lyapunov direct method in the paper
[Smirnova, Shepeljavyi and Utina, 2007].
The transfer matrix of the linear part of system (52)

has the form

K(p) = C∗(A− pEm)−1B −R (p ∈ C), (53)

where Em is an (m×m)-unit matrix and a frequency-
domain condition may be for instance as follows:

<e{æK(p)−K∗(p)εK(p)− η} ≥ 0 |p| = 1, p ∈ C,
(54)

where (l × l)-diagonal matrices æ, ε > 0, η > 0 are
varying matrix parameters.
We shall need the notations

µ
(i)
j (æ, k, Q) =

γj−Γj+
(−1)i

æjk (Q+
∑l

j=1 |æj |Rj)

γj+Γj
,

(i = 1, 2)
(55)

We shall also need the following quadratic forms of
z ∈ Rm and ξ ∈ Rl:

F (z, ξ) =
= ξ∗æ(C∗z + Rξ) + ξ∗ηξ + (C∗z + Rξ)ε(C∗z + Rξ).
Φ(z, ξ) = (Az + Bξ)∗H(Az + Bξ)− z∗Hz + F (z, ξ),

(56)
Here H = H∗ is a (m×m)-matrix and
ε = diag{ε1, ..., εl}, η = diag{η1, ..., ηl} ,
æ = diag{æ1, ..., æl} are real diagonal (l × l)-
matrices.
If the condition (54) is fulfilled for some matrices

æ, ε > 0, η > 0then according to Yakubovich-Kalman
frequency-domain theorem [Yakubovich, 1973] there
exists a matrix H = H∗, which guarantees that the in-
equality Φ(z, ξ) ≤ 0 is valid for all z ∈ Rm, ξ ∈ Rl.
Theorem 2. Let there exist such diagonal ma-

trices ε > 0, η > 0, æ and such positive integers

m1, m2, ...,ml that the following relations hold:
1) For all p ∈ C, |p| = 1 the matrix

<e{æK(p)−K∗(p)εK(p)− η} (57)

is positive definite.
2) The inequalities

4ηj

[
εj − æjα0j

2 (1 + |µ(i)
j (æ,mj , z

∗(0)Hz(0))|)
]

>

>
[

æjµ
(i)
j (æ,mj , z

∗(0)Hz(0))
]2

(58)
(j = 1, 2, ..., l, i = 1, 2) with α0j = α2j if æj > 0, and
α0j = α1j if æj < 0 are true. Here H = H∗ is just
such a (m×m)-matrix that Φ(z, ξ) ≤ 0, ∀z ∈ Rm,
ξ ∈ Rl.
Then for any solution (z(n), σ(n)) of (52) with initial

data (z(0), σ(0)) the estimates

|σj(n)− σj(0)| < mj∆j (j = 1, 2, ..., l) (59)

are true for all natural n.
The proof of theorem 2 is based on a special

Lyapunov-type lemma with Lyapunov functions of the
form ”a quadratic form plus integral of a nonlinearity”.
The nonlinearity in Lyapunov function is constructed
by Bakaev-Guzh technique [Leonov, Smirnova, 2000]
intended specially for phase control systems.
Let us extend the state space of system (52) [Leonov,

Smirnova, 2000], [Koryakin, Leonov, 1976]. For the
purpose we introduce the notations

y =
∣∣∣∣
∣∣∣∣

z
ϕ(σ)

∣∣∣∣
∣∣∣∣ , P =

∣∣∣∣
∣∣∣∣
A B
0 El

∣∣∣∣
∣∣∣∣ , L =

∣∣∣∣
∣∣∣∣

0
El

∣∣∣∣
∣∣∣∣ , (60)

C∗1 = ||C∗, R||, ξ1(n) = ϕ(σ(n + 1))− ϕ(σ(n)).
Here P is a ((m + l)× (m + l)) - matrix, L is a
((m + l)× l) - matrix, C∗1 is a (l × (m + l)) - matrix,
y is a (m + l)-vector and ξ1 is a l-vector. Then
system (52) can be written as follows

y(n + 1) = Py(n) + Lξ1(n),
σ(n + 1) = σ(n) + C∗1y(n), n = 0, 1, 2, . . .

(61)

Consider the forms of y ∈ Rm+l and ξ1 ∈ Rl

Φ1(y, ξ1) = (Py + Lξ1)∗H1(Py + Lξ1)−
−y∗H1y + F1(y, ξ1),
F1(y, ξ1) = y∗LæC∗1y + y∗C1εC

∗
1y+

+y∗LηL∗y + (A1C
∗
1y − ξ1)∗τ(ξ1 −A2C

∗
1y),

(62)
where Ai = diag{αi1, αi2, ..., αil} (i = 1, 2),
H1 = H∗

1 is a ((m + l)× (m + l)) - matrix, and
ε, η, æ, τ are real diagonal matrices with varied
elements.



Theorem 3. Suppose there exist such diagonal
matrices ε > 0, τ > 0, η > 0 , æ and such positive
integers m1, m2, ...,ml that the following relations
hold:

1) For all p ∈ C, |p| = 1 the matrix

<e{æK(p)−K∗(p)εK(p)− η
+(A1K(p) + (p− 1)El)∗τ((p− 1)El + A2K(p))}

(63)
is positive definite.

2) The inequalities

4ηj

[
εj − æjα0j

2 (1 + |µ(i)
j (æ,mj , y

∗(0)H1y(0)−
−r)|)] >

[
æjµ

(i)
j (æ, mj , y

∗(0)H1y(0)− r)
]2

(64)
(j = 1, 2, ..., l, i = 1, 2) are valid, where H1 = H∗

1 is
such a ((m + l)× (m + l))-matrix that Φ1(y, ξ1) ≤ 0
(y ∈ Rm+l, ξ1 ∈ Rl) and

r ≤ inf
n=0,1,2,...

y∗(n)H1y(n). (65)

Then for solution (z(n), σ(n)) of (52) with initial data
(z(0), σ(0)) the estimates (59) are true for all natural n.
Remark 1. Notice that if the relation 1) of the theo-

rem is fulfilled then according to Yakubovich–Kalman
frequency–domain theorem [Yakubovich, 1973] there
exists a matrix H1 = H∗

1 , which guarantees that the
inequality Φ1(y, ξ1) ≤ 0 is valid for all y ∈ Rm+l,
ξ1 ∈ Rl.
Theorem 4. Let all the relations of theorem 3 be ful-

filled, except relation 2) which is substituted by the re-
quirement
2’) inequalities

4ηj

[
εj − æjα0j

2 (1 + |µ(i)
j (æ,mj , |y∗(0)H1y(0)|)|)

]
>

>
[

æjµ
(i)
j (æ,mj , |y∗(0)H1y(0)|)

]2

(66)
(j = 1, 2, ..., l, i = 1, 2) are valid with H1 = H∗

1 satis-
fying Φ1 ≤ 0 (y ∈ Rm+l, ξ1 ∈ Rl).
Then for any solution (z(n), σ(n)) of (52) with initial

data (z(0), σ(0)) the following limit relations are true:

z(n) → 0, σj(n) → σ̂j as n → +∞, (67)

where ϕj(σ̂j) = 0, and

|σj(0)− σ̂j | < mj∆j (j = 1, 2, ..., l). (68)

4 Conclusion
Two types of multidimensional phase systems,

namely distributed systems and discrete ones are con-
sidered. By means of a priori integral estimates method

and Lyapunov direct method combined with Bakaev-
Guzh special technique frequency-domain estimates
for the phase coordinates are established.
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