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Abstract
Hamiltonian systems model a number of important

problems in theoretical physics, mechanics, fluid dy-
namics and others disciplines.
Many important physical and engineering processes

can be described by a suitable linear Hamiltonian for-
malism.
The properties of Hamiltonian systems like conserva-

tion of energy or volume in the phase space leads spe-
cific dynamical features.
This paper approaches the study, analysis and char-

acterization of linear Hamiltonian systems through the
linear algebra.
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1 Introduction
Roughly speaking a Hamiltonian system is a mathe-

matical formalism to describe the evolution equations
of a physical system, and they are characterized by the
existence of a symplectic structure on a smooth even-
dimensional manifold ([D’Alessandro, 2001], [Mas-
sawe, 2016],[Seyranian, Mailybaev, 2003]). These
kind of systems constitute a broad subject of study that
can be treated from many different points of view.
We are interested in linear Hamiltonian systems that

is say Hamilton system that are linear differential equa-
tions. For this kind of systems the linear algebra is the
cornerstone of many of the results that can be obtained.
Controlling Hamiltonian systems has recently at-

tracted the attention of researchers due to their ap-
plications in areas such as quantum control satel-
lite control, mixing control or power system control,
([D’Alessandro, Dahleh, Mezic, 1999], [Bloch, Kr-
ishnaprasad, Marsden, Sánchez de Alvarez, 1992],
[Brocken, Khaneja, 1999], [D’Alessandro, 2001],
[Bloch, Krishnaprasad, Marsden, Sánchez de Alvarez,
1992], [Vaidya, Mezic, 2003]).

2 Preliminaries
2.1 Hamiltonian matrices
Let J be a real skew-symmetric matrix 2n × 2n de-

fined on the form

J =

(
0n In
−In 0n

)

where On and In are zero and identity matrices.

Notice that J t = J−1 = −J

Definition 2.1. A real 2n × 2n matrix A, is said a
Hamiltonian matrix if the matrix JA is symmetric

Attending at definition and J matrix properties, an
well known equivalent definition of Hamiltonian char-
acter is given in the following proposition

Proposition 2.1. The matrix A is Hamiltonian if and
only if, it verifies the equation AtJ + JA = 0

Proof. JA is symmetric if and only if JA = (JA)t

JA = (JA)t ⇐⇒ JA− (JA)t = 0

JA−AtJ t = 0⇐⇒ AtJ + JA = 0

That is to say, A is a Hamiltonian matrix⇐⇒ AtJ +
JA = 0

Definition 2.2. The set of 2n× 2n Hamiltonian matri-
ces is expressed by

Hn = {A ∈M(R)2n×2n| A
tJ + JA = 0}



Properties 2.1. Let A be a Hamiltonian matrix.

i) Suppose A written as a block matrix in the form

A =

(
A11 A12

A21 A22

)

where A11, A12, A21, and A22 are n-order square
matrices. Then, the matrices A12 and A21 are
symmetric, and A11 +At

22 = 0.
ii) A = JS where S is a symmetric matrix.

At is Hamiltonian.
iii) The sum (and any linear combination) of two

Hamiltonian matrices is also Hamiltonian, as well
as is their commutator.

iv) The space of all Hamiltonian matrices is a Lie al-
gebra, denoted sp(2n). The dimension of sp(2n)
is 2n2 + n. The corresponding Lie group is the
symplectic group Sp(2n). This group consists of
the symplectic matrices, that is to say the set of
matrices A which satisfy AtJA = J .

3 Dynamical systems
Given a dynamical system with multiples inputs
u1(t) . . . um(t), multiples outputs y1(t) . . . yp(t) and
x1(t) . . . xn(t) state variables, it is possible model its
behaviour with n first order differential equations

Figure 1. Dynamical system with multiples inputs and outputs


ẋ1 = f1(x1(t) . . . xn(t), u1(t) . . . um(t), t)

...
ẋn = fn(x1(t) . . . xn(t), u1(t) . . . um(t), t)

and with the p output equations
y1 = g1(x1(t) . . . xn(t), u1(t) . . . um(t), t)

...
yp = gp(x1(t) . . . xn(t), u1(t) . . . um(t), t)


Taking

u(t) =


u1(t)
u2(t)

...
um(t)

 ;x(t) =


x1(t)
x2(t)

...
xn(t)

 ; y(t) =


y1(t)
y2(t)

...
yp(t)



and rewriting in vectorial form

ẋ(t) = f(x(t), u(t), t) (1)
y(t) = g(x(t), u(t), t)

where ẋ(t) = d
dtx(t)

it is obtained a general form to model dynamical sys-
tem.

Characterization
At practice, the most of dynamical systems works like

linear dynamical systems. And if not, in any case, it
becomes necessary linearize them by zones to study.
This is the reason for the interest in using a linear alge-
bra techniques to study them.

So, the differential state equations most used to de-
scribe the behaviour of a system are

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(2)

where x(t) ∈ Rn is called the state vector, u(t) ∈ Rm

the input vector, t ≥ 0, A, B, C and D are real matrices
of appropriate sizes.
The most typical representation of a system modelled

by (2), valid for all linear system, is using a blocks dia-
gram as shown the figure (2)

Figure 2. Blocks diagram of an open loop dynamical system.

It is important to note that (2) refers to linear time-
invariant systems. By abuse of language, they only will
be referred as linear systems while they make no mis-
take about it.

3.1 Linear Hamiltonian systems
Definition 3.1. The system (2) is called linear Hamil-
tonian if and only if is A is a Hamiltonian matrix.

In case of Linear Hamiltonian systems, the own
Hamiltonian determines concretes sizes for matrices
and vectors involved in the model. So,



Corollary 3.1. Let us consider a linear Hamiltonian
system given by (2) then,

i) A ∈ Hn

ii) B ∈M(R)2n×m

iii) C ∈M(R)p×2n

iv) D ∈M(R)p×m

It is important to note and remember that m were the
numbers of inputs, p the numbers of outputs and n the
minimun number of states to describe the system.

3.2 Control of Hamiltonian Linear systems
Roughly speaking, controllability denotes the ability

to move a system around in its entire configuration
space using only certain admissible manipulations.
More specifically, the system (2) is controllable if

and only if the controllability matrix has full row rank
([Chen, 1970]):

rank
(
B AB . . . An−1B

)
= n

When the system is controllable, there exists a feed-
back K in such a way that the resultant closed loop
system

ẋ(t) = (A−BK)x(t)
y(t) = (C −DK)x(t)

(3)

have a desired stable solution.
Given an open loop linear Hamiltonian, the interest of

the study concerns in obtain the feedback making the
closes loop system stable reaching the intended states
and preserving the Hamiltonian structure of the system.

Figure 3. Closed loop Linear system

So, the system in closed loop (3) will be Linear Hamil-
tonian if and only if the system matrix is Hamiltonian,
i.e. A−BK ∈ Hn

Proposition 3.1. Given a Linear Hamiltonian system
in open loop, the closed loop system will continue be-
ing Hamiltonian if and only if BK is a Hamiltonian
matrix.

Theorem 3.1. Let consider a Linear Hamiltonian Sys-
tem. The matrix K =

(
K1 K2

)
is a feedback matrix

preserving the hamiltonian character if and only if K
is a solution of the Sylvester generalized equation

Kt
1B

t
1 +B2K2 = 0

in such away tat B1K2 and B2K1 are symmetrical ma-
trices

Proof. It suffices to compute

M =

(
0n In
−In 0n

)(
B1

B2

)(
K1 K2

)
and force it to be symmetrical: M = M t.

Using Kronecker product (⊗) and vectorializing oper-
ator (vec) the following corollary is obtained

Corollary 3.2. Let consider a linear Hamiltonian sys-
tem. The matrix K =

(
K1 K2

)
is a feedback matrix

preserving the hamiltonian character if and only if K
is a solution of the following linear system

(
Bt

1 ⊗ In In ⊗B2

)(vecKt
1

vecK2

)

in such away tat B1K2 and B2K1 are symmetrical ma-
trices

Proof. It suffices to remember (see [Lancaster, Tis-
menetsky, 1985], for more information), that

If A = (aij) ∈ Mn×m(C) and B ∈ Mp×q(C)
then,

A⊗B =


a11B a12B . . . a1mB
a21B a22B . . . a2mB

...
...

...
an1B an2B . . . anmB

 ∈Mnp×mq(C).

If X = (xi
j) ∈ Mn×m(C), denoting xi =

(xi
1, . . . , x

i
m) the i-th row of the matrix X .

vec : Mn×m(C) −→Mnm×1(C)
X −→

(
x1 x2 . . . xn

)t
.

If A ∈ Mn×m(C), X ∈ Mm×p(C) and B ∈
Mp×q(C) then,

vec (AXB) = (Bt ⊗A)vec (X).

Particular cases



- Suppose now that B1 = 0 then, B2K2 = 0 and
B2K1 being a symmetric matrix

- Analogously, if B2 = 0 then, B1K1 = 0 and
B1K2 being a symmetric matrix

- If
(
B1 = B2 then, Bt

1 ⊗ In In ⊗B1

)(vecKt
1

Kt
2

)
=

0 with B1K1 and B1K1 symmetric matrices.

Example 3.1. Let B be a matrix with B1 = 0 and

B2 =

(
1 2
3 4

)
Then, K2 = 0 verifies B2K2 = 0) and

taking K1 =

(
x y
z t

)
with y+2t = 3x+4z B2K1 is a

symmetric matrix, and BK is a Hamiltonian matrix:


0 0
0 0
1 2
3 4

(a 3a+ 4c− 2d 0 0
c d 0 0

)
=


0 0 0 0
0 0 0 0

a+ 2c 3a+ 4c 0 0
3a+ 4c 9a+ 12c− 2d 0 0


and


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0




0 0 0 0
0 0 0 0

a+ 2c 3a+ 4c 0 0
3a+ 4c 9a+ 12c− 2d 0 0

 =


a+ 2c 3a+ 4c 0 0
3a+ 4c 9a+ 12c− 2d 0 0

0 0 0 0
0 0 0 0


4 Conclusions
In this paper an analysis and characterization of lin-

ear Hamiltonian systems through the linear algebra has
been done.
The study and existence of specific feedbacks that pre-

serve the Hamiltonian properties is only function of the
structure of control matrix, without influence of the
own system matrix. The use of linear algebra tech-
niques let us obtain the all possible feedbacks solving
a linear system.
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