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Abstract
The paper discusses problems of route design and

choice for the planar movement of the objects with the
limited maneuverability as vessels are. A notion of hi-
erarchical (i)−system is considered. Conjugated hier-
archical systems provide dual descriptions of complex
surroundings with multiple obstacles and route tube
formed by the chain of cylindric branches is consid-
ered.
Symmetry of models allows to form algorithm

based on the duality property of guaranteed con-
trol/estimation problems. Quality is evaluated by ex-
tremal functionals. A priori procedures of control and
estimation are supposed to be determined by the choice
of causal (nonanticipative) operators. Particular cases
of dual problems for conjugated hierarchical systems
are discussed.
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1 Introduction
The formation control and team behavior simulation

problems are significant items in modern agenda of op-
timal control and game theories. The problems also
include a wide range of statements connected to mod-
elling real-time interaction of teams with finite mem-
bership.
The application analysis shows that various interac-

tions of participants could be considered as individ-
ual or common movement depending on restricted re-
sources, in particular, information; supply, distribution
and transformation of which are under hierarchically
organized control.
The motion of participants may be treated in terms

of system positions reflecting state, spacial, concep-
tual and organizational structures, results of observa-
tion and management. Participants may change their

positions in accordance with consequent control deci-
sions, step-wise formed on a symmetrical and discrete
positional grid. Hence the common interaction is split
into multiple layers of respectively independent pro-
cesses for couples of symmetrical systems. Note that
logics of business-planning is the same and decision-
making tree techniques are evident example. Game
models of conflicts in industrial management and pro-
duction system simulating are similar in ideas, but is
out of discussion here.
The problem under consideration in the paper is con-

nected with route planning for the team of objects con-
strained in dynamics and overcoming obstacles in the
common motion.
Research is partly motivated by applications in navi-

gation [Kruglikov, 1994] and net tracing, where practi-
cal problems may be stated as geometrical, even planar
ones. The crucial point for route planning algorithms
design is choice of adequate information structure. The
requirement is to describe regularly complex circum-
stances with multiple obstacles and routes of team mo-
tion in case of objects limited in perception and con-
flicting interests. Further it is convenient to discuss the
obstacles as islands.
Different mathematical approaches are known to be

examined for route design. The reference presented be-
low does not even sketch the variety of ideas but out-
lines some restrictions to realize them.
Well-known techniques of the route choice is based

on the obstacles description as net cells various in com-
plexity. The route trajectory is drawn nearby the con-
tour vertices. The difficulties of applying this model for
the optimal route design are considered in [Shlapober-
sky, Lyapustina, Nikolaev and Hramov 2007].
Interval analysis techniques [Jaulin, 2001] based on

the description of the obstacles as the union of rect-
angles proves to be efficient. But corresponding con-
structions depending on the level of investigation are
not regularly hereditable, that complicates the hierar-
chy analysis.



Variation techniques developed in [Berdyshev, Kos-
tousov, 2007] allow full scale route modelling based
on contingent constructions. The significant maneuver-
ability is required.
A wide range of situations allows imbedding restric-

tions of object dynamics and observation in uncertainty
of state position. Then the analysis of tubes of admis-
sible trajectories is possible via guaranteed approach.
In [Kruglikov, 1994] was shown that a priori choice of
optimal tube and parameter approximation of obstacle
are symmetrical problems.
The structural symmetry and duality of problem state-

ments and solutions for conjugate systems are essen-
tial properties in the optimal control theory under un-
certainty [Kurzhanski, 2006]. The duality property for
control problems with set-membership description of
disturbances and integral / extremal performance index
[Kruglikov, 1997] have been investigated on the base
of operator presentation.
The possible application of results on duality of guar-

anteed estimation and control problems for the route
design and choice is considered below.
Presented models, based on a notion of hierarchical

(i)−system, below may provide the unified description
of organizational structure, routes and geography. Then
the problem of shoreline description is dual with the
problem of admissible route design. Main construc-
tions are based on finite combination of chains with
cylindric branches. Complex shape of shoreline may
be described in advance in the form of sea graph and in
the consequence the admissible routes may be chosen
on the graph. The admissible route corresponds to the
tube of trajectories, sections of which involve accumu-
lated errors.

2 Problem statement.
Assumption 1. Suppose that the following properties

hold.
i) Sets G0, S0 ⊆ B(V ) present the basic zero-

level information for description of obstacles and sea.
Here V, B(V ) denote metric space (V, dc) and power
set respectively. Subsets G0 = ∪{G|G ∈ G0},
S0 = ∪{S|S ∈ S0} are nonintersecting, G0 ∩ S0 =
∅; V = G0 ∪ S0.

ii) An admissible trajectory is approximated by a
chain with linear branches {Lk| k ≤ K}. The inequal-
ity below restricts maneuverability
|Lk| ≥ RR[Tan(αk/2) + Tan(α(k−1)/2)] + d,

where αi, RR are angle and radius of return, d
minimal length of the straight branch. Accumu-
lated errors of dynamics RR and position observa-
tion R∗ are estimated by parameter Rmax; Rmax =
Max{R∗, RR}. Then a chain CS2,K of (Rmax,Lk)-
cylinder branches is a tube of trajectories correspond-
ing to admissible routes.
iii) Functionals φK , φL, φE estimate quality of

CS2,K , where φK(CS2,K) = m(K) is amount of
branches, φL(CS2,K) =

∑
k≤K |Lk| is a length of

tube, φE(CS2,K) = φL(CS2,K)/φK(CS2,K) in-
dex of efficiency.

2.1 The notion of hierarchical (i)−system.
Definition 1. The triple C = {X|P, Q} is called a

hierarchical (i)−system if the following components
are included.
1.1) Topological region X = {X|Sc}. Here X ⊆

(V, dc), Sc = {cc, rc|ec} is a polar coordinate system
corresponding to the fixed point cc and zero direction
ec.
1.2) Graph of organizational structure P = {P ,P}.

Here P is a list of (i− 1)−systems presenting vertices
P = {C.m = {X|P, Q}.m} and a binary relation P=
{(C, C?)} ⊆ P × P reflects a structure.
1.3) Positional approximation Q = {Q, Q}; links

Q = {q = Lk} are Sc−ordered by index θ : Q → N ,
θ(q) = k; θ(Q) = K = {1, ..., k} ⊆ N.
Following parameter values [i, kc, K, ok] evaluate ba-

sic properties of hierarchical system (i)-Ckc,K =
(i){X|P, Q}. Here level i corresponds to the scale
k = [rc/Rmax]; k = 2i; kc = m(Q) is amount of
actual relations, 0 ≤ kc ≤ 8. Amount of components
is K = m(P ).
Typology of (i)−systems includes components, sub-

systems such as chains CS2,K with cylindric branches,
arcs, orbits, stars, nets.

2.2 The circumstances description.
Definition 1 allows to form ordered space B by the

operations over hierarchical system:
(+) combination via smooth closure of (i)−links qLk;

(-) Decomposition (i)C = {X|L, S}, extraction sub-
systems (i − 1)C.m = {X|L, S}.m, m = 1, 2 (i −
1)C.1(+)(i− 1)C.2 = (i)C.
Note that CS2,K is (+) combination of standard

branches, CS2,K = (+|k ∈ K)CS2,1.
Set BG of hierarchical (i)−systems CG =
{XG|PG, QG} provides the construction of obstacles
as a combination of islands.
1.G) (i)XG = (i){XG|Sc}, where XG ∩ G0 6= ∅,

and Sc = {cc, rc|ec} is an internal polar coordinate
system.
2.G) (i)PG = (i){PG ,PG}. The list of (i −

1)−systems presents islands (i)PG = {(i −
1)CG.m = {XG|PG, QG}.m}, and a binary relation
PG⊆ PG× PG reflects a structure.
PG = {(CG, CG?)|ΠG(πG(CG), πG(CG)?) ≤ δ},
where πG(CG) ≤ πG(CG?).
An injective mapping πG : PG → N, πG(CG) =

m; gives an ordering of islands with respect to Sc.
πG(PG) = MG = {1, ..., mG},mG ∈ N.
ΠG : N × N → R1; ΠG(m1,m2) = (i)δ.m1m2

describes the separation of (i− 1) systems.
3.G) QG = (i){QG,QG}; (i)QG = {qG} is a

Sc−ordered list Lk = {l, r|l}k of links, chains form-
ing a border of the main system and (i)qG′ is for bor-
ders of nearby systems of the same level (i). Borders of



level (i) are combinations of (Rmax,Lk)−cylindrical
branches, ordered by θG : QG → N,
θG(qG) = k; θG(QG) = KG = {1, ..., kG} ⊆ N.

2.3 The admissible route tubes description.
Set BS of hierarchical (i)−systems CS gives de-

scription for sea and admissible route tubes if CS =
{XS|PS, QS} satisfies the following properties.
1.S) XS = {XS|SS}, where XS ∩ S0 6= ∅. An

external polar coordinate system SS = {cS, rS|e0}
corresponding to the point cS and zero direction e0 is
fixed.
2.S) Graph PS = {PS ,PS} provides a network de-

scription. Here PS = {CS.m = {XS|PS, QS}.m},
and PS is a binary relation for structure.
3.S) position: QS presents a SS−ordered list Lj =
{l, r|l}(j) of links, describing bays, straits, fjords.
In the case of admissible route tubes the chain with

cylindric branches may be presented as follows.
(S.1) ∀QS2 =< L1, L2 >∈ QS ∃CS2,K =

(+|k ≤ K)CS2,K ; PK = {S(k)|1 ≤ k ≤ K} ⊆ PS:
∀1 ≤ k < K (S(k), S(k + 1)) ∈ P&LO ∈
QS(1)&LF ∈ QS(K).
(S.2) CS2 = {L1, L2|(L1, L2) ∈ QS} ⇔
[(l1, lD) ∗ (l2, lD) < 0 ∨ L2 = l1l2 + L1−],
where lD = A(α/2)l12, l12 = l1l2/d(l1, l2).
The couple {L1, L2} (LO, LF ), LO =
{lO, Rmax|lO}, LF = {lF,Rmax|lF}; is di-
rected, Sc−ordered, if (lO, lD) ∗ (lF, lD) < 0, where
lD = A(/2)lOF, lOF = lOlF/|lOlF |. The couple
LO,LF is symmetrical; if (lO, lOF ) = (lOF, lF ).
Problem 1.1. Suppose that Assumption 1 holds,

description of obstacles is given by the set BG and
LO,LF are fixed. Find an admissible route (i)CS∗ ∈
BS : LO, LF optimal according to the sequential cri-
teria: ΦA = minBS{φK((i)CS),

ΦW = minBS{φL((i)CS),
ΦI = maxBS{φE((i)CS).

Construction of sets BG, BS of hierarchical
(i)−systems are symmetrical because they are based
on the couples of directed links QG,QS. So a notion
of conjugated (i)−systems CG = {XG|QG,PG}
and CS = {XS|QS, PS} may be given.
Definition 3. (ig)CG ∈ BG and (is)CS? ∈ BS are

conjugated hierarchical (i)−systems, if
∀(is)CS ∈ BS : XG ⊆ XS ⇒ XS? ⊆ XS;
and (i)CS? is the convex hall depended on (i) −

XG, QG.
The symmetry in extremal problems means duality

of problem statements and solutions for conjugate sys-
tems.

2.4 Duality of extremal problems.
Further a symmetrical operator representation of ex-

tremal a priori problems stated for linear systems with
unknown in advance parameters is used.
The notations below are following: B(X,Y ) is the

set of linear bounded operators mapping X in Y ; R =

Rl ∪ {−∞, +∞}. The symbols o, ∗ stand for a super-
position and conjunction respectively. A scalar product
in a Hilbert space X is denoted by < ·, · >X . EY is
the unity operator in Y, EY : Y → Y .
Assumption 2. Suppose that the following properties

hold.
i) X, Y, Z, Ẑ are Hilbert spaces.
ii) F,A0, B, G0 are fixed causal [9] operators, and B

is a strictly causal one. F ∈ B(X, Z), A0 ∈ B(X, Y ),
B ∈ B(Ẑ, Y ), G0 ∈ B(Ẑ, Z).
iii) U is a set of causal operators U,U ∈ B(Y, Ẑ).
iv) Convex proper functionals φ and θ, φ : Z →

R, θ : X → R, are such that

inf{φ∗(ζ∗)|ζ∗ ∈ Z} > −∞, inf{θ(η)|η ∈ X} > −∞;

Here φ is a closed functional.
Elements ξ and ν, satisfying the linear system

ξ = Fη + G0ν;
ν = Uζ, ξ ∈ Y, ν ∈ Ẑ;
ζ = A(U)η = A0η + Bν;



 (1)

may be interpreted as realizations of an observed sig-
nal and control. The control procedure U,U ∈ U, is
fixed before a performance of the system (1) with an
uncertain parameter η, η ∈ X, starts. Then the prob-
lem of a priori design of control acting on the base of
uncomplete or imperfect observations may be stated as
the following one.
Problem 2.1. Under assumption 2 find an operator

U∗, U∗ ∈ U, satisfying the condition

−∞ < sup
X
{Φ(U∗)} = min

U
sup
X
{Φ(U)} < +∞,

where Φ(U) = φ(Fη + G0oUoA(U)η)− θ(η).
A functional θ describes the quality restrictions on un-

certain parameter η. If θ is defined by θ(η) = δ(η|W ),
where δ(·|W ) is an indicator function [4] for a convex
weakly compact set W , W ⊆ X, then problem 2.1 may
be interpreted as an a priori problem of ensured control
and/or estimation [Kruglikov, 1997].
The assumptions on operators B and U,U ∈ U, mean

that mappings ΨY (U), ΨẐ(U);
ΨY (U) = EY −B ◦ U, ΨY (U) : Y → Y ;
ΨẐ(U) = EẐ − Uo ◦B, ΨẐ(U) : Z → Z.
are homeomorphisms and the equality

U ◦Ψ−1
Y (U) = Ψ−1

Ẑ
(U) ◦ U,

holds for every U ∈ U. Hence the equality holds
G0oUoA(U) = G(U)oUoA0 ,
where G(U) = G0oΨ−1

Ẑ
(U). Moreover a singleton

correspondence between sets U and U0 exists. It is de-
fined by equivalent expressions



U0 = {U0 = UoΨ−1
Y (U) = Ψ−1

Ẑ
(U)oU |U ∈ U};

U = {U = U0 ◦ (EY + B ◦ U0)−1 =
= (EẐ + U0 ◦B)−1oU0|U0 ∈ U0}.

Thus for sets U0 and U satisfying the equality above
the problem 2.1 is equivalent to the following one.
Problem 2.2. Let the assumption I holds, and an op-

erator set U0 is given, U0 ⊆ B(Ẑ, Z). Find an operator
U0∗, U0∗ ∈ U0, satisfying the equality

−∞ < sup
X
{Φ0(U0∗)} = min

U0

sup
X
{Φ0(U0)} < +∞,

where Φ0(U0∗) = φ(Fη + G0oU0∗oA0η)− θ(η).
The last statement corresponds to the case of open-

loop control systems or problem 2.1 with a closed-loop
effect eliminated.

2.5 The basic algorithm design.
Analogy of the problems 1.1 and 2.1 allows to form an

algorithm of route design in accordance with the sepa-
ration principle of control optimal for systems suffering
from unknown in advance disturbances. Then solutions
of the problem 1.1 may be constructed through a step-
wise procedure based on solutions of two separate ex-
tremal problems. The first one is a problem of situation
estimation in the case of a given control. The other is an
optimal synthesis problem for a system with complete
measurement data available. In the game theory similar
property is known as certainty equivalence. Mention
that systems under consideration are non-linear, per-
formance of whose are evaluated through an extremal
functional. So the tube formed this way will be admis-
sible, but should not be optimal.
Description of obstacles analogical to the problem 2.2

may be given by the statement below.
Problem 2.2. Suppose that Assumption 1 holds, de-

scription of obstacles is given by the finite list PG.
Find the set BG of hierarchial systems (i)CG∗ ⊆ BG
optimal in accordance with the sequential criteria:

ΦA = minBG{φK((i)CG);
ΦW = minBG{φD((i)CG), where φD((i)CG)

evaluates maximal deviation if φK = K is given.
ΦI = maxBG{φE((i)CG).

The structure of the standard hierarchial system corre-
sponding to the situation without obstacles is given by
equalities below.
The couple of links L2 = {L1, L2}LS deter-

mine the set of routes BS(LO, LF ) = {CS2,K =
{LO, {LO, LF}K , LF} = {XS|L2, SS = {Sk|k ∈
K}}(K)}; Kmin ≤ K ≤ Krec ≤ Kmax.
Here {LO, {LO, LF}(K), LF} is a combination of

a separate subsystems CS2,K(LO,LO(K))(+)[ orbit
{LO,LF}(K)] (+)CS2,K(LF (K), LF ). The result
may be codified f(k) = (k1.k2.k3), where k1, k2
correspond to efficient and actual set of knots on the
k1−orbit, k2 = m(PS); k3 = k− knot number; 1 ≤
Kmin ≤ k3 ≤ k2 Krec ≤ k1 = Kef ≤ Kmax.
Here values Krec, Kmax may be exactly calculated
in particular cases.

Lemma 1. If k is given, then regular surround-
ing CS∗ of the sector G = S(c, r|e) is symmetrical
and equally tight in point cm corresponding to direc-
tions A[α(K−2k0)/K]em, k0 = 0, ..., K. CS∗ deter-
mines the shortest route. The length of weak surround-
ing (via the central line) Lc(m,K) = |LS[G;K]|
and maximum deviation c(K) from the sector arc,
Lc(α.m,K) = 2rrK tan(α.m/K),
c(K) = −rr = rr[cos−1(α.m/K) − 1] =

2rr[tan−1 2(α.m/2K)− 1]− 1.

Lemma 2. Extremal via criteria [E.A|W |I] reg-
ular surroundings CS[E](G; K, Rmax) of the sec-
tor G corresponds to the parameter K values K∗ =
Kmin|Kmax|Kef, respectively. Values Kmax =
min{KKrec|[2RRtg(α.m/K) + d]Komrr]} pro-
vides the minimal length of the linear branch;
Kef is an efficient surrounding CS[I](G; K) =

(+|m)CS2(Gm, 1, Rmax) : |CS(G; Kef)| =
max{Lc(α.m, K)/K}, branch lengthes are no more
then 2Rmax;
Kef = min{K(α.m, r.m), [KKα.m/φ∗]},
K(α.m, rm) = max{K(α.m), [α.m/φ∗]}; φ∗ =

2Arctg(Rmax/(rm + Rmax)).
Lemma 3. Optimal [A|W |I] routes are standard;

m ⊆ MS(LO,LF )M(LO,LF ).$, ω. and are of the
form
CS2,K = $〈L1, LO(K)〉(+)[ω{LO, LF}(K)]
(+)$〈LF (K), L2〉.
Approach to the problems of route design and choice

based on the analogy with the structural properties of
ensured control/estimation is considered. Systems un-
der consideration are non-linear, performance is eval-
uated by extremal functionals. The simulation tests
show the adequacy of presentation in terms of con-
jugated hierarchical systems and dual problem state-
ments to real situations. The additional theoretical in-
vestigation are required.
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