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Abstract
The search task is one of the most di�cult when it

comes to execution speed, and reducing the latter is
important both when working with large data and
with small samples, if they need to be processed fre-
quently and in a limited time. Grover's algorithm
gave hope to quantum computing and served as an
excellent base for all possible implementations and
modi�cations. In this paper, we propose a slightly
di�erent algorithm that increases the probability of
�nding the nearest value by reducing the probability
of undesirable values in a controlled manner (in pro-
portion to their di�erence from the desired value),
as well as implementing an oracle that requires a
single call without an additional ancilla qubit to re-
distribute the amplitudes.
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1 Introduction
Quantum computing has been fascinated by the

prospect of using quantum e�ects for decades
[Ozhigov, 2021]. In particular, Shor's algorithm,
based on the quantum Fourier transform, demon-
strates the use of a qubit phase as an additional
source for storing information [Shor, 1994], [Cop-
persmith, 1994]. The same technique is imple-
mented in the phase estimation algorithm [Kitaev,
1995] and the algorithm for solving systems of lin-
ear equations, known as HHL [Harrow et al., 2008].
These and other quantum algorithms have their
own �eld of application and related limitations,
but the tools implemented in their schemes can be
combined and used autonomously to solve di�erent

problems: the use of phase, superposition, qubit en-
tanglement, transition to multilevel qudits [Ozhigov,
2021], [Saha et al., 2022], [Wang et al., 2020], [Mo-
gos, 2007]. All these are powerful tools of quan-
tum technologies, allowing one to obtain advantages
in comparison with classical computations. As for
the data search problem, the most well-known ap-
proach to its optimization contains Grover's algo-
rithm [Grover, 1996]. However, even here we have
to face a number of di�culties in implementation,
such as determination of the number of calls to this
algorithm, which a�ects its accuracy; the number
of possible solutions, which must also be taken into
account, and also the presence of a hypothetical ora-
cle function, or black box (also used in the Deutsch-
Jozsa algorithm and the so-called Simon problem
[Deutsch, Jozsa, 1992], [Simon, 1997]), whose action
is described only in the abstract. This scheme is an
excellent illustrative example of quantum superior-
ity and is often used as a demonstration and training
material. As mentioned above, Grover's algorithm
searches for the number of the desired element in
a data array and works with the counter K, which
haves range of values from k0 = 0 to km−1 = 2l − 1,
wherem is the number of array elements, and l is the
number of bits needed to store the value of m, i.e.
the counter. This method implies that at least one
element that exactly matches the sought one must
exist and the number of oracle queries depends on
the number of required elements in the array (a suc-
cessful way to solve these problems is also presented
in [Brassard et al., 2000]). In practice, if the very
existence of the value exactly coinciding with the
desired solution is not guaranteed, it is necessary
to �nd the nearest, and most suitable solution in
the database with a minimum error. In addition,
a calibrable constraint provided by the algorithm is
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Figure 1. General Scheme of QASNE.

necessary to avoid unnecessary iterations that can
worsen the result. For this purpose, QASNE is pro-
posed and contains the following actions with a de-
scription of the oracle implementation:

1. Obtaining as input an array A of m elements of
size n and a reference value B of size n.

2. Creating, with the help of quantum logic gates,
a superposition of all m elements of the array
A in a special quantum register of n qubits and
counter of l d-level qudits. The qubits serve as
a bu�er for copying and storing the array A and
occupy a memory size equal to one element of
the array being copied. The qudits act as an
auxiliary tool to create a superposition: each
state of the qudits is entangled with a single
copy element of the array A.

3. The bitwise implementation of �nding the ele-
ment nearest to B occurs simultaneously over
all m elements, and also allows us to ignore
the in�uence of the sign of the calculated dif-
ference. The result of comparing each element
is recorded as a change in the probability of
getting a qudit state entangled with the given
element: the smaller the element matches the
search conditions, the smaller the probability of
getting a qudit state entangled with this element

when measured.
4. The measurement of the counter qudits. The

resulting state will indicate the number of the
elements that are searched for.

2 The essence of the problem
Let there exist an array A = [A0, A1, . . . , Am−1]

and some value B, for which it is required to �nd
in the array A either an exact match or the nearest
one. Obviously, you should subtract B from each
element in turn, �x the value of the di�erence at
each step, at the end choose the smallest di�erence
and by its index refer to the element in the array
A, taken by this way the nearest to the reference
value B. In the classical version of the calculations,
it is necessary to create a local copy A′ for array A
of identical size. When searching for the smallest
di�erence, it would be necessary to perform succes-
sive calculations on each element of the copy, and
in addition, to take into account the sign of the dif-
ference, which requires additional resources in the
form of time.

3 Execution of QASNE
The algorithm scheme takes into account multi-

level qubit systems (i.e., qudits or quNits) to gener-
alize and take into account the possibility of imple-
mentation on various computing spaces. This gener-
alization applies to counter operations as the funda-
mental ideas of this work. The array loading option
plays an auxiliary role here. This paper provides
an example of its implementation and the ways to
optimize it can serve as a basis for a separate study.
Figure 1 shows a schematic diagram, implemented

on a quantum computer, to �nding the nearest value
(to a given B) in an array A, where each of m el-
ements consists of n qubits. The reference value B
also consists of n qubits. Let's assume that we need
to copy data into the register of a quantum processor
and do this explicitly while simultaneously confus-
ing it with the counter. We will also assume that,
as in the classical case, we do not have to work with
the source information but only with its copy, so
we recognize copying each element as the necessary
classical part, after which we proceed to the quan-
tum part, where, unlike the classical one, the entire
array will be represented in a superposition in a sin-
gle register of the quantum processor. To create a
local copy of the array A =

∑m−1
i=0 Ai, we will use

a quantum register C and a counter D, where reg-
ister C occupies n qubits and counter D contains
l d-level qudits (D0, D1, . . . , Dl−1). The number of
possible states of the counter D is proportional to
the array A, i.e., dl = m. All qubits and qudits
of the register and counter are initiated by zeros,
the memory blocks A0 . . . Am and B receive at in-
put the values which are required to be processed by
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Figure 2. Rotation of the desired vector relative to the orthogonal
hyperplane (the sum of all other vectors of the system states).

the task condition. The �rst step creates a superpo-
sition of all possible states in counter D by means of
Hadamard gates, each of which is described by the
formula [Chizzini et al., 2022]:

Hd =
1√
d

d∑
µ,ν=1

ei2π/d(µ−1)(ν−1)|µ⟩⟨ν| (1)

Thus, a superposition of all states is formed in the
counter D:

D =
1

d
1
2

(|0l−1 . . . 0100⟩+ |0l−1 . . . 0110⟩+ . . .

· · ·+ |(d− 1)l−1 . . . (d− 1)1(d− 1)0⟩)
(2)

For convenience, each of the statesD will be denoted
by d′j , j ∈ {0 . . . dl−1}. The �rst step is necessary to
entangle one element of a copy of the array A (placed
in the register C) with each of the obtained states
of the counter D. This is why dl must be equal to
m. The entanglement of the qubits is carried out
in step I (the upper half of the Figure 1) by means
of controlling gates, where the controlling states are
the values |1⟩ of the qubits in element Ak, and the
states d′k of the counter D such that Ck (the kth

superposition state of register C) becomes equal to
Ak:

|B⟩|A0⟩|A1⟩ . . . |Am−1⟩|0001 . . . 0n−1⟩|0001 . . . 0l−1⟩
H⊗d

d→
1

2
n
2
|B⟩|A0⟩|A1⟩ . . . |Am−1⟩|0001 . . . 0n−1⟩

(|0001 . . . 0l−1⟩+ |0001 . . . 1l−1⟩+ |d0d1 . . . dl−1⟩)
I→

1

2
n
2
|B⟩|A0⟩|A1⟩ . . . |Am−1⟩(|A0⟩|0001 . . . 0l−1⟩+

+|A1⟩|0001 . . . 1l−1⟩+ · · ·+
+|Am−1⟩|d0d1 . . . dl−1⟩)

(3)

The scheme shows the controlling states of the
counter's qudits abstractly as follows: a black cir-
cle means a controlling action when the qudit state
is |0⟩, and a white circle means the maximum qudit
level is |d⟩. The grayscale can indicate all interme-
diate levels.
In step II (the lower half of Figure 1), a sequence

of control gates making turns in the counter D is
invoked. This part, in the "Grover" sense, is an
oracle that will need a single call, as will be seen
later. Here, the main task is to �nd the closest
value by calculating the di�erence between B and
each element of the array A stored in the register
C. In doing so, the probability amplitude for each
state d′j entangled with Cj decreases in proportion
to the di�erence B˘Cj obtained. An abstraction of
the described action is shown in Figure 2. If we
represent all N = 2n possible states of some sys-
tem as basic orthogonal vectors of the hyperspace
of states, the superposition vector will be the result
vector equidistant from the basic ones, respectively,
when measuring this system the probability of get-
ting each of its possible states is the same and equal
to 1 2

n
2
:

|Ψ⟩ = 2
n
2

(|0001 . . . 0n−1⟩+ |0001 . . . 1n−1⟩+ . . .

· · ·+ |1011 . . . 1n−1⟩) =
N−1∑
i=0

|Ψi⟩
(4)

The weakening of the probability of the kth state
|Ψk⟩ means the shift of the result vector |Ψ⟩ to-
wards the hyperplane α of all other basis vectors
(
∑N−1

i=0 |Ψi⟩− |Ψk⟩) and away from the vector |Ψk⟩.
The di�erence B˘Ak = B˘Ck is written as a ro-
tation in counter D using rotation gates such that
the probability of a state |Dk⟩ entangled with |Ak⟩
decreases in proportion to the value of B˘Ak. The
comparison is bitwise, so the ith bit of the n-bit value
of B is subtracted from the ith bit of the n-bit regis-
ter C. The value of the rotation is discrete, depends
on the signi�cance of the bits being compared and
is equal to π

2i+1 : the di�erence of the higher bits is
written as a rotation by π

2 , the next bits by
π
4 , etc.

The di�erence of low bits will rotate the state of the
counter D by π

2n . As mentioned above, due to the

superposition of states
∑m−1

j=0 |Aj⟩) concentrated in
the register C, the di�erence B˘Aj is counted simul-
taneously over all elements. In the end, the counter
D is measured and the resulting state entangled with
a particular element of the array will point to the
sought element. A general view of the space rotation
matrix for the attenuated probability amplitude Cj
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is shown below:
cos φ

2 ± sin φ
2√

2n−1
· · · ± sin φ

2√
2n−1

± sin φ
2√

2n−1
cos φ

2 · · · ± sin φ
2√

2n−1
...

...
. . .

...

± sin φ
2√

2n−1
± sin φ

2√
2n−1

· · · cos φ
2

 (5)

4 Example for 2-level qudit (i.e. qubit)
Figure 3 details a scheme for the case of n = 3,

m = 2 and a two-level qudite D(d = 2) correspond-
ing to a classical qubit. The displayed equations
should be centered like in the example given below:
The superposition creation function is a sequence of

Figure 3. Example of a circuit for an array of two 3-qubit elements.

To�oli and Pauli X gates that rotate the state of
the qubit around the X axis by π:

RX(Θ) =

(
cos θ

2 −i sin θ
2

−i sin θ
2 cos θ

2

)
(6)

The transformations after step I are as follows:

|B⟩|A0⟩|A1⟩|000⟩|0⟩
H→

1√
2
|B⟩|A0⟩|A1⟩|000⟩(|0⟩+ |1⟩)

I→
1√
2
|B⟩|A0⟩|A1⟩(|A0⟩|0⟩+ |A1⟩|1⟩)

(7)

where the coupling CD will have state 1√
2
(|A0⟩|0⟩+

|A1⟩|1⟩). Then it is necessary to determine |Aj⟩
nearest to |B⟩ and strengthen the probability of get-
ting the state Aj⟩|dj⟩ when measuring the counter
D by writing the di�erence for each B−Aj as a ro-
tation around the X axis with controlled gates Rx.
The gate provides a rotation only if the values of
the qubits with the same signi�cance are not equal
to each other. That is, if you compare states 101
and 011, the qubit rotation will be at the expense of
the high and middle bits, since the values of the low
bits coincide and are equal to 1. The direction of ro-
tation is initialized in any convenient way, but only
the sign of the di�erence determines the change of
direction: if at a negative result the rotation is cho-
sen clockwise, then at a positive one must be cho-
sen counter-clockwise, and vice versa. This is neces-
sary for the correct calculation of the di�erence, so
101−011 = 010, which in this example is equivalent
to +π

2 − π
4 = π

4 . If all turns are made in the same
direction, the angle will be equal to 3π

4 , which is
equivalent to 110, and this is incorrect. Here we of-
fer only one of the many options for the dependence
of the rotation angle on the number of bits. For ex-
ample, you can turn the highest bit by 2π

3 and the
next by π

3 , and no more rotations. The values can be
calibrated depending on the expected e�ect on the
�nal result, especially if something is known about
the data (for example, that they are no more or less
than a certain value, or it is necessary to weaken
all values to a certain threshold). In this case, the
bitwise setting can take any convenient form. The
only restriction is that the sum of all rotations does
not exceed π, otherwise the reverse changing in am-
plitudes may begin, as in the case if you make un-
necessary oracle calls in Grover's algorithm. Thus,
if the state Aj is entangled with the state of a spe-
cial D qubit was |0⟩ with each turn the probability
of the value |1⟩ will increase in proportion to the
di�erence B − Aj . It does not matter whether the
total turn (by all digits) occurs clockwise or coun-
terclockwise (more is subtracted from less or vice
versa), because eventually in both cases the proba-
bility will "move away" from |0⟩ and get closer to
|1⟩. Consequently, the need to consider the sign is
discarded. The following values will be taken as an
example: |B⟩ = |101⟩, |A0⟩ = |010⟩,|A1⟩ = |110⟩;
B − A0 = 101 − 010 = 011. The result 011 should
be written in qubit D as a rotation around the
X-axis, the abstraction of the amplitude ampli�ca-
tion |A1⟩|1⟩ is shown in Figure 4. In calculating
B − A1 = 101− 110 = −001 the di�erence is nega-
tive, which does not a�ect the absolute value of the
probability amplitude of state |A0⟩|0⟩ corresponding
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Figure 4. Abstraction of projection of subtraction into rotations.

to a rotation angle of π
4 (Figure 4). As you can see,

there is no need to consider the sign of the di�erence,
because in this case it only a�ects the direction of
motion: clockwise or counterclockwise (+π

2 or −π
2 ).

101 − 010 will be equal to 011 − 110: the probabil-
ity of getting |0⟩ when measuring the counter D will
decrease towards |1⟩ in both cases equally. So, given
|B⟩ = |101⟩, |A0⟩ = |010⟩, |A1⟩ = |110⟩ the opera-
tion of the circuit shown in Figure 4 is described by
the equation:

|B⟩ |A0⟩ |A1⟩ |000⟩|0⟩
H−→

H−→
→

1√
2
|B⟩ |A0⟩ |A1⟩ |000⟩(|0⟩+ |1⟩) I−→

I−→ 1√
2
|B⟩ |A0⟩ |A1⟩ (|A0⟩ |0⟩+ |A1⟩ |1⟩) =

=
1√
2
|101⟩|010⟩|110⟩(|010⟩|0⟩+ |110⟩|1⟩) II−→

II−→ 1√
2
|101⟩|010⟩|110⟩⊗

⊗
[
|010⟩

(
cos

π

4

(
cos

π

8

(
cos

π

16
|0⟩ − i · sin π

16
|1⟩

)
+

+i · sin π

8

(
−i · sin π

16
|0⟩+ cos

π

16
|1⟩

))
−

−i · sin π

4

(
i · sin π

8

(
cos

π

16
|0⟩ − i · sin π

16
|1⟩

)
+

+cos
π

8

(
−i · sin π

16
|0⟩+ cos

π

16
|1⟩

)))
+

+|110⟩
(
i · sin π

8

(
cos

π

16
|0⟩ − i · sin π

16
|1⟩

)
+

+cos
π

8

(
−i · sin π

16
|0⟩+ cos

π

16
|1⟩

))]
(8)

5 Conclusion
Taking into account all arithmetic calculations af-

ter measuring the counter D the probability of get-
ting |0⟩ is 37% and the probability of getting |1⟩ is
63%. So, with a probability of 63% depending on
the proportions of di�erences B − A0 and B − A1,
the value nearest to B will be determined by the
element A1, which means that the goal is achieved
by using the proposed scheme. This algorithm can
be considered as an anti-search, which may not suf-

�ciently enhance the desired result, but signi�cantly
limit the probability of measuring "bad" values or
use it as a �lter that allows you to in�uence the
output value in one way or another. At the same
time, by calibrating the angle of rotation, the de-
gree of this in�uence can be varied. It should be
noted that the gains may be insu�cient and more
likely to be advisory in nature (especially as in the
case of the example where the di�erence between
the two elements is not so great), and the algorithm
should be used in tasks where high accuracy is not
needed, but overall a good result and high process-
ing speed are desirable. The implementation options
for the proposed rotation matrix, as well as the iter-
ativity, i.e. the possibility of further increasing the
amplitude with repeated oracle calls, are indepen-
dent tasks and a reason for discussion at this stage
of the study.
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