
 
 

 

  

Abstract—The problem of resonance regime stabilization is 
considered for the case of unknown natural frequency of 
vibration machine. A solution for fourth order linear model of 
the machine with uncertain parameters, external disturbances 
and partial noisy measurements is proposed. 

I. INTRODUCTION 
N resonance regime an oscillating systems can be forced 
to oscillations by any sufficiently small input with 
frequency closed to natural frequency of the system. This 

is why resonant machines have the best performance since 
they use resonance oscillations of actuating mechanism as 
the main operating regime. In resonance regime the drive 
energy is consumed with the best performance [2]. 

These facts explain the efficiency of resonant machines, 
however their practical implementation meets obstacles 
dealing with necessity of exact tuning to resonance regime. 
In the papers [4], [5] two solutions of adaptive resonance 
control are presented for simplified model of vibration 
machine (vibrational crusher). The first solution is based on 
adaptive observer from works [3], [7], [12]. The advantage 
of this solutions consists in estimation of unknown values of 
all model parameters, that results to high dimension of the 
regulator, that is the negative feature of the solution. The 
second solution is based on speed gradient approach. This 
solution does not provide parameters values estimation, 
however dimension of regulator in this case equals to the 
plant dimension. Both solutions are obtained under 
assumptions that displacement coordinate is measurable with 
noise, and unknown bounded disturbance affects on the 
crusher. 

In this paper the problem of crusher resonance control is 
considered for the double mass model case. In such situation 
the solving problem becomes more complex, since for one 
mass it is necessary to provide resonant oscillations with 
desired amplitude, while for another mass it is required to 
ensure the absence of movements. A solution of the problem 
is presented. 
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II. PROBLEM STATEMENT 
The double mass scheme for a vibration crusher is shown 

in Fig. 1. Comparing with [4] here another one moving 
platform E with mass m  is added, the platform is located on 
moving platform А of mass M . The foundation B is 
stationary, values of spring stickinesses c  and 0c  are 
unknown. For simplicity of consideration let us assume, that 
vibroexciters C and D are rotating synchronously and they 
form harmonic exciting input on platform А. Let us assume, 
that movements of platforms А и E are possible in vertical 
plane only, denote these movements as Аx  and Ex  
correspondingly. It is necessary to design a controller 
adjusting frequency of motors rotating and amplitude of 
their total harmonic influence, which provides minimum of 
movement Аx  for the platform А or minimum of the 
platform energy (the problem of vibrations suppressions). In 
such situations all energy supplied by vibroexciters C and D 
are accumulated in platform E, which performs oscillations 
with maximum amplitude (which is possible for given 
amplitude of excitation force). It is required to adjust 
amplitude of control input ensuring oscillations of variable 

Ex  with desired amplitude (the problem of vibrations 
excitation). Let us stress, that excitation input is applied to 
the platform А, which movements it is necessary to 
minimize. Such problem is also called  as the problem of an 
active vibration absorber design [10], [11]. 
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Fig. 1. Double mass scheme of vibration crusher.
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 The mathematical model of the system has form: 
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where Rx ∈1 , Rx ∈3  are displacements of platforms E and 
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А correspondingly ( Exx =1 , Аxx =3 ), Rx ∈1 , Rx ∈3  are 
velocities of the platforms; Ry ∈1 , Ry ∈2  are 
measurements of variables 1x , 3x  available with noises 

RM∈φ1 , RM∈φ2 ; Rd M∈1 , Rd M∈2  are external 
disturbances acting on the platforms; 1β , 2β  are small 
unknown friction coefficients; f  is unknown initial springs 
tension between the springs; g  is free fall acceleration; ε  is 
adjusting control amplitude of the force formed by motors C 
and D; ω  is adjusting frequency. Values of masses m  and 
M  are assumed unknown and constant. 

III. MAIN RESULT 
The full energy function for the platform А has form: 
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that implies that the most suitable input providing the 
minimization of energy E  is state feedback gmfcx ++1  
(not the harmonic control )sin( tωε  chosen in the paper). 
However, the harmonic control can be easily implemented, 
that is its main advantage.  

System (1), (2) is a linear one, under imposed conditions 
its characteristic polynomial has two pares of complex 
conjugate roots with strictly negative real parts: 

iβ±α−=λ12 , iδ±γ−=λ34 , 0>α , 0>β , 0>γ , 0>δ . 
Thus, the analytical expression of the system solutions can 
be written as follows: 
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where A , B , C , D , E , G , K , L , U , P , Q , R , S , 
T  are the solutions parameters dependent on initial 
conditions and the system coefficients; )(1 txd  and )(3 txd  
are forced parts of the solutions originated by disturbances 

1d  and 2d  presence. Since all eigen-values have negative 
real parts, then normal parts of solutions converge to zero 
asymptotically and for the problem solution the analytical 
expressions for parameters U , P , Q , R , S  and T  should 
be derived only. Basing on the kind of their dependence on 
adjusting amplitude ε  and frequency ω  it is possible to 
determine the optimal values of these parameters providing 
minimum of displacements of the platform А with 
oscillations of the platform E with desired amplitude. To 
find the expressions let us use differential equations for 
velocities 2x  and 4x  from (1), (2). Substituting in these 
equations expressions for the system solutions and equating 
the coefficients with the same multipliers we obtain: 
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Solutions of this system of linear equations have form: 
 0=R ; )()()( ωωε=ω zaS ;  

 )()()( ωωε=ω zbT , 1−+= cgmfU , 
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For the posed problem solution it is necessary to find 
frequency *ω , which provides minimum absolute values 
for polynomials )(ωS  and )(ωT , for example, the 
fulfillment of the equality: 
 =ω )*(S 0)*( =ωT . 
Polynomials a , b  and z  have complex form of 
dependence on frequency, that prevents to analytical 
solution of the problem without additional assumptions. As 
such additional requirements let us suppose, that values of 
friction coefficients 1β , 2β  are negligible small comparing 
with all other parameters values. In this case we can skip 
these terms in equations (1), (2), then expressions (3) for S  
and T  can be reduced to the following: 
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It is clear, that in such situation the desired frequency has 
the form: 
 mc=ω* , 
that is the anti-resonance frequency between a force applied 
on platform A and the corresponding displacement of 
platform A, and values 
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become small for small 1β , 2β . If values of the friction 
coefficients are rather big, then one can try to derive 
numerical solution *ω  providing a minimum of 
polynomials )(ωS  and )(ωT .  

For desired frequency *ω  realization it is necessary to 
calculate estimates for values of unknown parameters c  and 
m . As in [4] let us design adaptive observer with the filter, 
which provides estimation of unmeasured velocity of 
variable 1x : 
 )( 1yqq +ρ−= , )( 12 yqx +ρ= . (4) 
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 )( 11111111 θΩ+−Ωγ−=θ zy ;  

 )( 21211122 θΩ+−Ωγ−=θ zy ; (7)  

 )( 31311133 θΩ+−Ωγ−=θ zy , 

where 2
21 ][ Rzz ∈=z  is vector of variables 1x  and 2x  

estimation; 32
232221131211 ];[ ×∈ΩΩΩΩΩΩ= RΩ  is 

auxiliary matrix variable; 3
321 ][ R∈θθθ=θ  is vector of 

estimates for parameters ][ 1 mfcmmc β=θ ; 
parameters 1K , 2K , γ , ρ  are strictly positive. Variable 

Rx ∈2  is the estimation of unmeasured variable 2x . 
Differential equation for estimation error 
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with auxiliary variable Ωθeδ += : 
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Tacking in mind equations (8), (9) it is possible to prove 
the following result (the analog of Lemma 2 from [4]).  

L e m m a  1. Let )(1 tφ  be differentiable and 

∞+<φ |||| 1 , ∞+<φ |||| 1 , ∞+<φ |||| 2 , ∞+<|||| 1d , 
∞+<|||| 2d ; there exist 0>r , 0>Δ  such, that signals 

)(11 tΩ , )(12 tΩ , )(13 tΩ  admit ),( rΔ –persistency of 
excitation (PE) condition. Then for any 01 >K , 02 >K , 

0>γ , 0>ρ  all solutions of the system (1), (2), (4)–(7) are 
bounded and the estimate holds: 
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A definition of PE property and some useful lemmas are 
presented in Appendix 1. Proofs of the lemma and all other 
results are postponed to Appendix 3. Posed PE properties of 
signals )(11 tΩ , )(12 tΩ , )(13 tΩ  are satisfied if vector 
signal )1,,( 221 xyy −  (input to the system (6)) has the same 
property, that is a mild requirement for any operating regime 
of vibrational crusher.  

Further it is necessary to design adaptation algorithm for 
amplitude ε , ensuring the desired amplitude of oscillations 
a  for variable 1x  with fixed control frequency ω . 
Asymptotically the behavior of variable 1x  is defined by 
constants U , P , Q . According to (3) constant U  does not 
depend on regulating variables ω  and ε , i.e. the relative 
displacements of the platform E with respect to the platform 
А can not be modified with the control produced by 
vibroexciters C and D. On the other hand the polynomials 

)(ωP  and )(ωQ  depend on amplitude ε  in linear fashion. 
These coefficients P  and Q  define the amplitude of 
variable 1x  oscillations asymptotically. Output )(1 ty  
amplitude on j th half-period of the control input can be 
defined as follows: 
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It is available for measurements piecewise constant signal. It 



 
 

 

is necessary to ensure convergence of amplitudes ja  to 
desired a  with index j  increasing. From (3) it follows that: 
 jjj wa +βε= , ,...2,1,0=j , 

where values of 0≥jw  corresponds to external 
disturbances presence and they depend on initial conditions, 
values of 0>β j  depend on initial conditions only (both jβ  

and jw  depend on system (1) parameters of course). 

According to problem statement values of jβ  and jw  are 
bounded, positive and unknown. As in [4] in the same 
situation, applying algorithm from book [6] (formulated in 
Appendix 2), it is possible to solve this problem. 

L e m m a  2. Let )sin()( ϕ+ωε= ttu , R∈ϕωε ,, . If for 
system (1), (2) and given 1φ , 2φ , 1d , 2d  there exist 
constants 10 <δ<  and R∈ε*  such, that for all 

,...2,1,0=j  the following recurrent inequalities are satisfied 

 2|*| δ≤−+βε aw jj , (10) 

then there exist 0>μ  and 0>Ε  such, that algorithm: 
 aa jj −=η , )||( jj sign η−δ=ν , Ε≤ε || 0 ,  
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for some value of index 0>J  provides for all Jj ≥  the 
following properties: 
 Jj ε=ε , δ≤− || aa j . 

Let )sin()( ϕ+ωε= ttu , R∈ϕωε ,,  and 
0)()()()( 2121 ===φ=φ tdtdtt , 0≥t . Then for any 

10 <δ<  there exist 0>μ , 0>Ε  such, that algorithm (11) 
for some index 0>J  provides for all Jj ≥  the following 
properties: 
 Jj ε=ε , δ≤− || aa j . ■ 

The inequalities (10) are the single verified condition of 
the lemma. The complexity of condition (10) verifying 
consists in its dependence on unknown disturbances, 
however for the case 02121 ===φ=φ dd  the inequalities 
(10) are satisfied for arbitrary δ . 

Adaptive observer (4)–(7) for any bounded control 
provides the estimation of system (1) unknown parameters 
and identification of its natural frequency *ω  (control input 
should possess some excitation properties to ensure PE 
conditions imposed in Lemma 1). Adaptation algorithm (11) 
from Lemma 2 for any control )sin( ϕ+ωε t  with fixed 
frequency ω  guarantees the desired amplitude of plant (1) 
oscillations via ε  adjusting. Let us combine both results. 

T h e o r e m  1. Let  

 ))(*sin()( tttu j ωε= , |)(|)(* 1 tt θ=ω , (12) 

and for any 1φ , 2φ , 1d , 2d  ( )(1 tφ  is differentiable and 

∞+<φ |||| 1 , ∞+<φ |||| 2 , ∞+<φ |||| 1 , ∞+<|||| 1d , 

∞+<|||| 2d ) there exist 0>r , 0>Δ  such, that signals 
)(11 tΩ , )(12 tΩ , )(13 tΩ  admit ),( rΔ –PE condition. 

Then for any 0>εx , 01 >K , 02 >K  and initial conditions 

xε≤|)0(| x  there exist 0>ρ , 0>γ , 10 <δ< , 0>μ , 
0>Ε   such, that all solutions of the system (1), (2), (4)–(7), 

(11), (12) are bounded and for the case 
0)()()()( 2121 ===φ=φ tdtdtt , 0≥t  there exist index 

0>J  and time instant 0>ωT  which for all Jj ≥  and 

ω≥ Tt  provide the following properties: 
 Jj ε=ε , δ≤− || aa j , δ≤ω−ω |)(**| t . ■ 

Thus, hybrid adaptive regulator (4)–(7), (11), (12) 
provides for any given compact set of initial conditions the 
solution of the posed problem with some accuracy δ . If 
variable 2x  is available for the direct measurements, then as 
it will be proven in the following result, the accuracy can be 
taken arbitrary. 

C o r o l l a r y  1. Let )()()( 322 ttxtx φ+= , 0≥t  
(variable 2x  is available for noisy measurements) and for 
any functions 1φ , 2φ , 3φ , 1d , 2d  ( ∞+<φ |||| 1 , 

∞+<φ |||| 2 , ∞+<φ |||| 3 , ∞+<|||| 1d , ∞+<|||| 2d ) there 
exist 0>r , 0>Δ  such, that signals )(11 tΩ , )(12 tΩ , 

)(13 tΩ  admit ),( rΔ –PE condition. Then for any 01 >K , 

02 >K , 0>γ , 10 <δ<  and initial conditions 2)0( R∈x  
there exist 0>μ , 0>Ε  such, that all solutions of the 
system (1), (2), (5)–(7), (11), (12) are bounded and for 

0)()()()()( 21321 ===φ=φ=φ tdtdttt , 0≥t  the 
relation holds 
 *)(*lim ω=ω

∞+→
t

t
 

and there exists index 0>J  such, that for all Jj ≥  
properties hold 
 Jj ε=ε , δ≤− || aa j . ■ 

E x a m p l e . Graphics of transient processes for the 
system (1), (2), (4)–(7), (11), (12) with parameters values 

5.2=m  kg, 53000 == cc  N/m, 521 =β=β , 05.0−=f  m, 
11=M  kg, ]1002005000[=γ , 401 =K , 4002 =K , 

500=ρ , 05.0=a , 01.0=δ , 100=μ  and disturbances 
)5.0sin(005.0)(1 ttd = , )sin(005.0)(2 ttd = , )(1.0)( 11 tdt =φ , 

)(1.0)( 22 tdt =φ  are shown in Fig. 2. At time instant 
500=t  sec values of mass m  for the platform E and initial 

springs tension f  are changed, they become 2=m  kg, 
01.0−=f  m. In Fig. 2,а graphic of frequency *ω  

estimation is shown, in Fig. 2,b and 2,c graphics for 
variables 1y  and 2y  are plotted, in Fig. 2,d the control 
amplitude graphic is presented. Here, as in the first example 
from [4], the deviation of estimated frequency *ω  from true 
value *ω  results to serious increasing of control amplitude. 
When frequency estimation error  has converged to zero, the 



 
 

 

control amplitude decreases. After that the deflections of 
regulated variables 1y  and 2y  from their desired values are 
originated by disturbances presence in the system. □ 
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Fig. 2. Trajectories for the system (1), (2), (4)–(7), (11), (12). 
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IV. CONCLUSION 
For the double mass model of vibrational crusher the 

hybrid adaptive regulator is proposed, which ensures for 
upper mass the resonant oscillations stabilization with 
desired amplitude and minimum movements of lower mass. 
The model uncertain parameters with external disturbances 
and measurement noises are taking into account. The 
identification of all system parameters and the estimation of 
natural plant frequency is ensured. The adaptive regulator 
contains one part operating in discrete time and another 
continuous one, that explains term “hybrid” placed in the 
title. Computer simulation results show workability of the 
proposed solution.  

APPENDIX 1 
The next property is frequently used in adaptive control 

systems theory to establish identification ability of 
adaptation algorithms [1], [6], [8], [9]. 
 D e f i n i t i o n  A 1 . It is said, that Lebesgue measurable 
and square integrable matrix function 21: llRR ×

+ →R  
with dimension 21 ll ×  admits ),( ϑL –persistency of 
excitation (PE) condition, if there exist strictly positive 
constants L  and ϑ  such, that for any 0≥t  
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where 
1lI  denotes identity matrix of dimension 11 ll × .

 The following lemma introduces an equivalent 
characterization of PE property used in the sequel. 
 L e m m a  A 1 . Let Lebesgue measurable and square 
integrable matrix function 21: llRR ×

+ →R  with dimension 

21 ll ×  be ),( ϑL –PE. Then for any L≥  and 0≥t  
inequality is satisfied: 
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The converse statement is obvious, if for matrix function 
R  inequality (A1) is satisfied for all L≥ , then R  is 

)2/,( ϑL –PE. Let us stress, that inequality (A1) means, that 

positive semidefinite matrix Ttt )()( RR  has positive 
definite averaged matrix for large enough time interval (the 
length of the interval should be bigger than L ). Such 
positivity in average was used in paper [3]. The importance 
of PE or positivity in average properties are explained in the 
following lemma [1], [6], [8], [9]. 

L e m m a  A 2 . Let us consider time-varying linear 
dynamical system 
 )()()( ttt T bpRRp +Γ−= , 00 ≥t , (A2) 

where 1lR∈p , Γ  is a positive definite matrix of dimension 
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R  is ),( ϑL –PE for some 0>L , 0>ϑ .  Then for any 
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defined for all 0tt ≥  and it admits estimate 
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APPENDIX 2 
Let recurrent inequalities be given: 
 jj

T
jj δ≤α+β || τv , ,...2,1,0=j , (A3) 

where jβ , jα  and jδ  are real numbers, jv  and τ  are 



 
 

 

vectors. It is required basing on values jv , jα , jδ , 

j
T
jjj α+β=η τv , )||( jjj sign η−δ=ν  and on sign of 

jβ  to design an algorithm of vectors 0τ , 1τ ,..., jτ  

adjusting, providing solution of recurrent inequalities (A3). 
Here 

 
⎩
⎨
⎧

<ξ−
≥ξ

=ξ
.0if,1

;0if,1
)(sign  

For solution of this problem let us use the result of 
Theorem 2.1.2 from book [6]. 

T h e o r e m  A 1 . Let us assume, that 
а) there exist numbers 0>βC , 0>χ  such, that 

 β≤β< Cj ||0 , || jj vχ≥δ ; 

b) there exist vector *τ  and number φ  ( 10 <φ≤ ) such, 
that for *ττ =  inequalities (A3) are satisfied “with 
reserve”: 

 jj
T
jj δφ≤α+β |*| τv ; 

c) there exist numbers μ′ , jμ , μ′′  providing: 

 1)1(20 −
βφ−<μ ′′≤μ≤μ′< Cj . 

Then for any real 0τ  the following algorithm provides a 
solution of recurrent inequalities (A3): 

⎪⎩

⎪
⎨
⎧

−=νβημ−

=ν
= −+

.1if,||)(

;1if,
21

jjjjjjj

jj
j

sign vvτ

τ
τ  (A4) 

For the number of algorithm errors 0r  the estimate is 
satisfied: 

 122
0

0 }])1(2[{|*| −
ββ μ ′′−φ−μ′δ−≤ CCr ττ . 

Algorithm (A4) has Lyapunov function 2|*|)( τττ −=V . □ 
Algorithm (A4) was called “Strap-2” in book [6]. 

APPENDIX 3 
P r o o f  o f  l e m m a  1. According to conditions of the 

lemma ∞+<|||| x , where ],,,[ 4321 xxxx=x  and, hence, 
∞+<|||| x . Then all conditions of Lemma 1 from [4] are 

satisfied and the error of variable 2x  estimation for filter (4) 

22 xx −=ι  is a bounded function of time and the estimate 
from Lemma 1 from [4] holds. For any 01 >K , 02 >K  
eigen-values of matrix G  have strictly negative real parts. 
Vector signal )( tr  is bounded for almost all 0≥t  by 
construction. Therefore, variable )( tδ  is bounded. Consider 
the Lyapunov function: 

 δPδTV = , 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

++−
−+= −

−

)1()(1
1)1(

2 2
2
1

1
21

2
1

121
KKKK

KKKKP , 

where 21,λλ  are eigen-values of matrix P , maxϑ  is the 
maximum singular value of matrix P . The time derivative 
for function V  have form 

2 2
1 2 1 2 max

2 2 1 2
1 2 max 1 2

| | 2 | | 2 | || |

0.5 | | 8 ( ) | | ,

TV K K K K

K K K K −

= − + ≤ − + ϑ ≤

≤ − + ϑ

δ δ Pr δ δ r

δ r
 

that implies the following asymptotical estimate for the 
system (9): 

 ||||)(8|)(|lim 1
21max2

1
1 rδ −−

∞+→
ϑλλ≤ KKt

t
, 

 
1 1 2

1
1 1 2 1

|| || ( )|| || || ||

2 2 (|| || || ||) || ||.

K c m c m

m x d−

≤ + φ + φ +

+ β φ +ρ +

r
 

Matrix G  also defines dynamics properties for systems (5), 
(6) and (8), inputs in these systems are bounded for almost 
all time instants. Thus, variables )( tz , )(tΩ  and )( te  are 
bounded too and for ∞+→t  they admit the same estimates. 

Let ]~~~[~
321 θθθ=−= θθθ  is unknown parameters 

identification error vector: 

 )~(~
1111 φ+θΩ−δΩγ=θ iiii , 3,2,1=i . 

Let us consider for iθ
~  the Lyapunov function: 

 2~
iiW θ= , 3,2,1=i ,  

2
11

2
1111

22
1 ||)(~2~2 φ+δγ+Ωγ−≤φ+δΩθγ+θΩγ−= iiiiiii WW . 

Expressions for iW  coincide with (A2) for 
2

11 ||)( φ+δγ=tb  and it 1)( Ω=R , γ=Γ . According to 
conditions of the lemma signals )(1 tiΩ  are ),( rΔ –PE for 
some 0>r , 0>Δ  for all 3,2,1=i . Applying the result of 
Lemma A2 to the system we obtain estimates for variable θ~  
behavior: 

 
12 2 0.5 ( )

1 0.5 2
1 1

| ( ) | | (0) |

( 2 ) || || , 1,2,3.

r t
i i

r

t e

r e i

−− γ Δ −Δ

− − γ

θ ≤ θ +

γ + Δ δ + φ =
 

Substituting in this expression the substantiated before 
asymptotical estimate for variable δ  we prove the result. 

P r o o f  o f  l e m m a  2. Let us show, that algorithm (11) 
is a variant of algorithm (A6) and all conditions of Theorem 
A1 are satisfied. In this problem 1=jv , δ=δ j  for all 

0≥j  and aw jj −=α . For δ=φ  from (10) condition (b) 

of Theorem A1 holds. Expression (3) implies, that: 
 β≤β< Cj ||0 , 0>βC . 

Then condition (a) of Theorem A1 is satisfied for δ<χ<0 . 
In such case there exists 0>μ  such, that condition (c) of 
Theorem A1 holds and algorithm (A6) can be rewritten in 
form (11). Additional modification of (11) dealing with 
boundedness of amplitude ε  by value Ε  does not change 
applicability conditions of Theorem A1. 

Since for 0)()()()( 2121 ===φ=φ tdtdtt , 0≥t  
condition (10) is satisfied for arbitrary 10 <δ< , then all 
conditions of Lemma 2 hold. Constant Ε  can be derived 



 
 

 

from bounds on admissible values of vector θ . 
P r o o f  o f  t h e o r e m  1. According to (11) for all 

0≥j  property Ε≤ε || j  holds. Then from (12) ∞+<|||| u  

and, hence, ∞+<|||| x , ∞+<|||| 2x . All conditions of 
Lemma 1 are satisfied and solutions of the system (4)–(7) 
are bounded. 

Let 0)()()()( 2121 ===φ=φ tdtdtt , 0≥t . Then the 
estimate from Lemma 1 holds: 

 
1 0.5

1 1 1
1 2 max 1 2 2

lim | ( ) | ( 2 )

16 ( ) || || ,

r
t

t r e

K K c m x

− − γ

→+ ∞

− − −

− ≤ γ + Δ ×

× λ λ ϑ ρ

θ θ
 

where ),),0((|||| 2 Ε=≤ θxXXx . Therefore, for any 
0>εθ , 0>εx , 01 >K , 02 >K  there exist 0>ρ , 0>γ  

such, that for some 0>εT  it holds that θε≤− |)(| tθθ  for 
all ε≥ Tt . For the control (12) the last conclusion means, 
that for any 0>εω , 0>εx , 01 >K , 02 >K  there exist 

0>ρ , 0>γ  such, that there exists 0>ωT  providing 

ωω ε≤|)(| te  for all ω≥ Tt , where )(**)( tte ω−ω=ω . For 

ω≥ Tt  control (12) can be rewritten as follows: 
 )()*sin())(*sin()( tetttettu ujj +ωε=+ωε= ω ,  

 ωεΕ<|||| ue . 
Due to continuity of the system solutions with respect to 
initial conditions and parameters, there exists 0>εω  such, 
that for some constants 10 <δ<  and Ε≤ε |*|  for all 

,...2,1,0=j  recurrent inequalities (10) are valid. Thus, all 
conditions of Lemma 2 are satisfied and the result of the 
theorem follows from Lemma 2. 

P r o o f  o f  c o r o l l a r y  1. From boundedness of 
discrete time variable jε  for all 0≥j  the properties 

∞+<|||| u  and ∞+<|||| x  hold. All conditions of Lemma 1 
are satisfied and solutions of the system (5)–(7) are 
bounded. 

Let 0)()()()()( 21321 ===φ=φ=φ tdtdttt , 0≥t . 
Then according to the result of Lemma 1: 

 θθ =
∞+→

)(lim t
t

. 

Indeed, in this case the system (4) is redundant and term 
|||||||| 2

1
1 x−ρ+φ  should be replaced with |||| 3φ . From (12) 

this conclusion means that 0)( →ω te  for ∞+→t , where 
)(**)( tte ω−ω=ω . On ω -limit trajectories of the system 

the control (12) has form )*sin()( ttu j ωε= . For 

0)()()()()( 21321 ===φ=φ=φ tdtdttt  all conditions of 
Lemma 2 hold asymptotically with *ω=ω  and 0=ϕ , that 
was necessary to prove. 
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