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Abstract
The paper studies optimal boundary control problems

with given intermediate values of the deflection function
for the string vibration equation with given initial and fi-
nal conditions. The boundary energy integral serves as
the quality criterion. The controls are either a displace-
ment at one end with the other end fixed or a displace-
ment at both ends of the string. The quality criterion is
set over the entire time interval. We rely on the meth-
ods of separation of variables and optimal control the-
ory with multipoint intermediate conditions to propose a
constructive approach for deriving an optimal boundary
control of string vibrations. We also perform a computa-
tional experiment and analyze its results.
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1 Introduction
Mathematical models of many physical and technolog-

ical processes with important theoretical and practical
implications are described by the one-dimensional wave
equation. In particular, the wave equation describes vi-
brations of strings, manipulator links, crane booms, air-
plane wings, and a number of other processes. There-
fore, there is a need to study control and optimal con-
trol problems of oscillatory processes described by the
wave equation which includes different problems state-
ments and both lumped (boundary) and distributed con-
trols. Such problems were discussed in [Butkovsky,
1965; Butkovsky, 1975; Sirazetdinov, 1977; Znamen-
skaya, 2004; Krabs, 1995; Yang et al., 2004; Li, 2008;

Dreglea et al., 2018; Sadybekov et al., 2016; Ilyin et al.,
2005; Moiseev et al., 2013; Abdukarimov, 2013; Ab-
dukarimov, 2014; Gibkina et al., 2016; Arguchintsev
et al., 2023; Arguchintsev et al., 2024]. Research mono-
graphs [Butkovsky, 1965; Butkovsky, 1975; Sirazetdi-
nov, 1977; Znamenskaya, 2004; Krabs, 1995], to name
just a few studies, provided an overview of the theory
of control of distributed vibrations. Studies [Ilyin et al.,
2005; Moiseev et al., 2013] (and other contributions by
the same authors) dealt with the problem of boundary
control (optimal control) of wave processes as part of
the class of generalized solutions. Studies [Abdukari-
mov, 2013; Abdukarimov, 2014] considered the prob-
lems of optimal boundary control of displacements at the
string ends based on minimization of the boundary en-
ergy integral, with such controls transferring the string
vibration process from an arbitrarily given initial state
to a given final state within an arbitrary and sufficiently
large time interval. The above studies have contributed
various methods for solving control and optimal control
problems, such as the Fourier method, method of har-
monics, and method of moments.

Many dynamic control processes pose multipoint
boundary value control and optimal control problems
where, along with classical (initial and final) bound-
ary value conditions, multipoint intermediate (both sep-
arated and non-separated) conditions are also given [As-
chepkov, 1981; Barseghyan, 2016; Korzyuk, 2010; Ko-
rzyuk, 2011; Barseghyan, 2021a; Barseghyan, 2019;
Barseghyan, 2021b; Barseghyan, 2012; Barseghyan,
2022; Barseghyan, 2021c]. Studies [Korzyuk, 2010; Ko-
rzyuk, 2011] considered a boundary-value problem for
the equation of string vibration with a given velocity
at some point in time and constructed a solution to the
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problem. There is an extensive body of research, in par-
ticular studies [Barseghyan, 2021a; Barseghyan, 2019;
Barseghyan, 2021b; Barseghyan, 2012; Barseghyan,
2022; Barseghyan, 2021c], on control and optimal con-
trol problems of oscillatory processes with multipoint
intermediate (both separated and non-separated) condi-
tions and both distributed and boundary controls under
different types of boundary conditions. However, there
is a gap in research of the problems of optimal bound-
ary control of oscillatory processes with multipoint inter-
mediate conditions with the functional being the integral
of the squares of derivatives of boundary displacements,
i.e., the boundary energy integral.

This paper seeks to design a constructive approach to
deriving an optimal boundary control function for con-
trolling string vibrations with given initial and final con-
ditions as well as intermediate values of deflection of
string points, where the quality criterion is the bound-
ary energy integral specified over the entire time inter-
val. We consider problems where the control is realized
both by displacement of the left end when the right end is
fixed and by displacement at the two ends of the string.
The problems are reduced to distributed action control
problems with zero boundary conditions. We construct
the optimal boundary control by relying on the method
of separation of variables and methods of the theory of
optimal control of finite-dimensional systems with mul-
tipoint intermediate conditions for arbitrary numbers of
first harmonics. We perform a computational experiment
and present the resulting plots with their comparative
analysis.

2 Problem Statement
Let the state of a distributed oscillating system (small

transverse vibrations of a taut string), i.e., the deviation
from the equilibrium state, be described by the function
Q(x, t), 0 ≤ x ≤ l, 0 ≤ t ≤ T , which conforms to the
wave equation

∂2Q

∂t2
= a2

∂2Q

∂x2
, 0 < x < l, t > 0, (1)

with the following initial and final conditions

Q(x, 0) = φ0(x),
∂Q

∂t

∣∣∣∣
t=0

= ψ0(x), 0 ≤ x ≤ l, (2)

Q(x, T ) = φT (x) = φm+1(x),

∂Q

∂t

∣∣∣∣
t=T

= ψT (x), 0 ≤ x ≤ l,
(3)

and boundary conditions:
with displacement of the left end while the right end is
fixed

Q(0, t) = µ(t), Q(l, t) = 0, 0 ≤ t ≤ T, (4)

with displacement of both ends

Q(0, t) = µ(t), Q(l, t) = ν(t), 0 ≤ t ≤ T. (5)

Here the functions µ(t) and ν(t) are the boundary con-
trols, a2 = T0

ρ , where T0 is the tension and ρ is the den-
sity of the string.

Let at intermediate time instants tk (k = 1, . . . ,m),
0 = t0 < t1 < . . . < tm < tm+1 = T ,

Q(x, ti) = φi(x), 0 ≤ x ≤ l, i = 1, . . . ,m. (6)

The boundary energy integrals that are to be minimized
have the following form:
with displacement of the left end while the right end is
fixed

T∫
0

[µ̇(t)]
2
dt, (7)

with displacement of both ends

T∫
0

{
[µ̇(t)]

2
+ [ν̇(t)]

2
}
dt. (8)

We assume that the function Q (x, t) ∈ C2(ΩT ),
where the set ΩT = {(x, t) : x ∈ [0, l] , t ∈ [0, T ]},
functions φi(x) ∈ C2[0, l] (i = 0, 1, . . . ,m + 1), and
functions ψ0(x) and ψT (x) belong to the space C1[0, l].
We also assume that all functions are such that the fol-
lowing consistency conditions are satisfied.

For the problems with displacement of the left end
while the right end is fixed:

φ0(0) = µ(0), ψ0(0) = µ̇(0),

φ0(l) = ψ0(l) = 0,

µ(ti) = φi(0), i = 1, . . . ,m,

φT (0) = µ(T ), ψT (0) = µ̇(T ),

φT (l) = ψT (l) = 0.

(9)

For the problems with displacement of both ends:

φ0(0) = µ(0), ψ0(0) = µ̇(0),

ν(0) = φ0(l), ν̇(0) = ψ0(l),

µ(ti) = φi(0), φi(l) = ν(ti), i = 1, . . . ,m,

φT (0) = µ(T ), ψT (0) = µ̇(T ),

φT (l) = ν(T ), ψT (l) = ν̇(T ).

(10)

Let us state the following problem of optimal boundary
control of string vibrations.

Problem 1 (displacement of the left end while the right
end is fixed). It is required to find an optimal boundary
control µ0(t), 0 ≤ t ≤ T that transfers the oscillatory
motion of the system (1) from a given initial state (2) to
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a final state (3), while satisfying condition (6) and mini-
mizing functional (7).

Problem 2 (displacement of both ends). It is required
to find optimal boundary controls and µ0(t) and ν0(t),
0 ≤ t ≤ T that transfer the oscillatory motion of the
system (1) from a given initial state (2) to a final state (3),
while satisfying condition (6) and minimizing functional
(8).

The paper contributes a constructive approach for solv-
ing the investigated optimal control problems that prop-
erly consider intermediate conditions while minimizing
the boundary energy integrals.

3 Reduction of Original Problems to Problems with
Zero Boundary Conditions

The stated problems with non-homogeneous (non-
zero) boundary conditions ((4) or (5)) with homoge-
neous equation (1) are reduced to optimal control prob-
lems with distributed controls (non-homogeneous equa-
tion) with zero boundary conditions [Tikhonov, 2011].
Details of the above approach with all the proofs are
omitted from the paper. However, a proper presentation
of further derivations of the solutions to the problems
warrant the inclusion of some of the formulas.

3.1 Reduction of Non-homogeneous Boundary
Conditions to Zero Boundary Conditions

The solution to equation (1) is to be found in the form

Q(x, t) = V (x, t) +W (x, t), (11)

where V (x, t) is an unknown function with boundary
conditions

V (0, t) = V (l, t) = 0. (12)

Given the boundary conditions Q(0, t) = µ(t),
Q(l, t) = 0:

W (0, t) = µ(t), W (l, t) = 0. (13)

Given the boundary conditions Q(0, t) = µ(t),
Q(l, t) = ν(t):

W (0, t) = µ(t), W (l, t) = ν(t). (14)

The functionW (x, t) for boundary conditions (13) and
(14), respectively, is represented as

W (x, t) =
(
1− x

l

)
µ (t) , (15)

W (x, t) = (ν(t)− µ(t))
x

l
+ µ(t). (16)

To determine the function V (x, t) we obtain the equation

∂2V

∂t2
= a2

∂2V

∂x2
+ F (x, t), (17)

where for Problem 1 with the function W (x, t) of type
(15)

F (x, t) =
(x
l
− 1
)
µ̈ (t) , (18)

and for Problem 2 with the functionW (x, t) of type (16)

F (x, t) = (µ̈(t)− ν̈(t))
x

l
− µ̈(t). (19)

3.2 The Reduction of Initial, Intermediate, and Fi-
nal Conditions to the Corresponding Conditions
for the Non-homogeneous Equation

Given the expressions for the function W (x, t) (15),
(16) and the consistency conditions, we obtain the cor-
responding conditions for the function V (x, t) from the
initial (2), intermediate (6), and final conditions (3).

In the case of the problem of boundary control of string
vibrations by displacement of the left end while the right
end is fixed, i.e. for the function V (x, t), we obtain the
following initial conditions:

V (x, 0) = φ0(x) +
(x
l
− 1
)
φ0(0),

∂V

∂t

∣∣∣∣
t=0

= ψ0(x) +
(x
l
− 1
)
ψ0(0),

(20)

intermediate conditions:

V (x, ti) = φi(x) +
(x
l
− 1
)
φi(0),

i = 1, . . . ,m,
(21)

final conditions:

V (x, T ) = φT (x) +
(x
l
− 1
)
φT (0) ,

∂V

∂t

∣∣∣∣
t=T

= ψT (x) +
(x
l
− 1
)
ψT (0) .

(22)

For the problems of boundary control of string vibra-
tions by displacement of two ends, i.e., for the function
V (x, t), we obtain the following initial conditions:

V (x, 0) = φ0(x)− (φ0(l)− φ0(0))
x

l
− φ0(0),

∂V

∂t

∣∣∣∣
t=0

= ψ0(x)− (ψ0(l)− ψ0(0))
x

l
− ψ0(0),

(23)

intermediate conditions:

V (x, ti) = φi(x)− (φi(l)− φi(0))
x

l
− φi(0),

i = 1, . . . ,m,
(24)

final conditions

V (x, T ) = φT (x)− (φT (l)− φT (0))
x

l
− φT (0),

∂V

∂t

∣∣∣∣
t=T

= ψT (x)− (ψT (l)− ψT (0))
x

l
− ψT (0).

(25)
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Thus, we obtain the following optimal control prob-
lems with zero boundary conditions.

Problem 10 (displacement of the left end while the
right end is fixed). It is required to find the optimal
boundary control µ0(t), 0 ≤ t ≤ T , that transfers the
oscillatory motion described by equation (17), (18) with
boundary conditions (12), from a given initial state (20)
to a final state (22), while satisfying intermediate condi-
tions (21) and minimizing functional (7).

Problem 20 (displacement of both ends). It is required
to find optimal boundary controls µ0(t) and ν0(t), 0 ≤
t ≤ T that transfer the oscillatory motion described by
equation (17), (19) with boundary conditions (12), from
a given initial state (23) to a final state (25), while satis-
fying intermediate conditions (24) and minimizing func-
tional (8).

4 Application of the Method of Separation of Vari-
ables and Reduction of the Solution to a Moment
Problem

The solution to the equation (17) is to be found in the
form

V (x, t) =

∞∑
k=1

Vk(t) sin
πk

l
x. (26)

Let us represent the functions F (x, t), φi(x) (i =
0, 1, . . . ,m+1), ψ0(x), and ψT (x) as Fourier series; by
substituting their values together with V (x, t) in equa-
tions (17), (18), (19) and in conditions (23)–(25) we ob-
tain

V̈
(s)
k (t) + λ2kV

(s)
k (t) = F

(s)
k (t),

λ2k =

(
aπk

l

)2

, s = 1, 2, k = 1, 2, . . . ,
(27)

F
(1)
k (t) = − 2a

λkl
µ̈(t), (28)

F
(2)
k (t) =

2a

λkl

[
(−1)kν̈(t)− µ̈(t)

]
. (29)

Here and in what follows the letter “s”, in the super-
script means ”‘Problem 1”’ if s = 1 and ”‘Problem 2”’
if s = 2.

In the case of problems with the displacement of the
left end and the fixed right end, the initial, intermediate,
and final conditions are represented as

V
(1)
k (0) = φ

(0)
k − 2a

λkl
φ0(0),

V̇
(1)
k (0) = ψ

(0)
k − 2a

λkl
ψ0(0),

(30)

V
(1)
k (ti) = φ

(i)
k − 2a

λkl
φi(0), i = 1, . . . ,m, (31)

V
(1)
k (T ) = φ

(T )
k − 2a

λkl
φT (0),

V̇
(1)
k (T ) = ψ

(T )
k − 2a

λkl
ψT (0).

(32)

In the case of problems with two-end displacement, the
initial, intermediate, and final conditions are represented
as

V
(2)
k (0) = φ

(0)
k − 2a

λkl

[
φ0(0) −(−1)kφ0(l)

]
,

V̇
(2)
k (0) = ψ

(0)
k − 2a

λkl

[
ψ0(0) −(−1)kψ0(l)

]
,

(33)

V
(2)
k (ti) = φ

(i)
k − 2a

λkl

[
φi(0) −(−1)kφi(l)

]
,

i = 1, . . . , m,

(34)

V
(2)
k (T ) = φ

(T )
k − 2a

λkl

[
φT (0) −(−1)kφT (l)

]
,

V̇
(2)
k (T ) = ψ

(T )
k − 2a

λkl

[
ψT (0) −(−1)kψT (l)

]
.

(35)

where F (s)
k (t), V (s)

k (t), φ(i)
k , ψ(0)

k , and ψ(T )
k , s = 1, 2,

denote the Fourier coefficients of the functions F (x, t),
V (x, t), φi(x), ψ0(x), and ψT (x), respectively.

The general solution to equation (27) and its derivative
have the form:

V
(s)
k (t) = V

(s)
k (0) cosλkt+

+
1

λk
V̇

(s)
k (0) sinλkt+

+
1

λk

t∫
0

F
(s)
k (τ) sinλk(t− τ)dτ,

V̇
(s)
k (t) = −λkV (s)

k (0) sinλkt+

+V̇
(s)
k (0) cosλkt+

+

t∫
0

F
(s)
k (τ) cosλk(t− τ)dτ, s = 1, 2.

(36)

Given the initial, intermediate and final conditions, we
obtain from (36) that the functions Fk(τ) for each k must
satisfy the following integral relations:

T∫
0

F
(s)
k (τ) sinλk(T − τ)dτ = C̃

(s)
1k (T ),

T∫
0

F
(s)
k (τ) cosλk(T − τ)dτ = C̃

(s)
2k (T ),

ti∫
0

F
(s)
k (τ) sinλk(ti − τ) dτ = C̃

(s)
1k (ti),

i = 1, . . . ,m, s = 1, 2,

(37)
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where the following two notations are introduced:

C̃
(s)
1k (T ) = λkV

(s)
k (T )−

−λkV (s)
k (0) cosλkT − V̇

(s)
k (0) sinλkT,

C̃
(s)
2k (T ) = V̇

(s)
k (T )+

+λkV
(s)
k (0) sinλkT − V̇

(s)
k (0) cosλkT,

C̃
(s)
1k (ti) = λkV

(s)
k (ti)−

−λkV (s)
k (0) cosλkti − V̇

(s)
k (0) sinλkti,

i = 1, . . . ,m, s = 1, 2.

(38)

In the case of the problem with displacement of the left
end and the fixed right end, substituting the expression
of the function F 1

k (t) from (28) into relations (37) and
integrating it by parts, subject to consistency conditions
(9), we obtain that the functions µ̇(t) for each k must
satisfy the following integral relations:

T∫
0

µ̇(τ) cosλk (T − τ) dτ = C
(1)
1k (T ),

T∫
0

µ̇(τ) sinλk (T − τ) dτ = C
(1)
2k (T ),

T∫
0

µ̇(τ)h
(1)
k (τ) dτ = C

(1)
1k (t1),

. . .

T∫
0

µ̇(τ)h
(m)
k (τ) dτ = C

(1)
1k (tm),

(39)

where

C
(1)
1k (T ) =

ψ0(0)

λk
sinλkT − l

2a
C̃

(1)
1k (T ),

C
(1)
2k (T ) =

ψT (0)

λk
− ψ0(0)

λk
cosλkT +

l

2a
C̃

(1)
2k (T ),

C
(1)
1k (ti) =

ψ0(0)

λk
sinλkti −

l

2a
C̃

(1)
1k (ti),

h
(i)
k (τ) =

{
cosλk(ti − τ), 0 ≤ τ ≤ ti,
0, ti < τ ≤ T,

i = 1, . . . ,m.
(40)

To make integral relations (39) more readable, we in-
troduce the following notations:

H̄
(1)
k (τ) =


cosλk (T − τ)
sinλk (T − τ)

h
(1)
k (τ)
. . .

h
(m)
k (τ)

 ,

C
(1)
k (t1, . . . , tm, T ) =


C

(1)
1k (T )

C
(1)
2k (T )

C
(1)
1k (t1)
. . .

C
(1)
1k (tm)

 .

(41)

Next, for the case of the two-end displacement prob-
lem, substituting the expression of the function F 2

k (t)
from (29) into relations (37) and integrating it by parts,
subject to consistency conditions (10), we obtain that the
functions µ̇(t) and ν̇(t) for each k must satisfy the fol-
lowing integral relations:

T∫
0

µ̇(τ) cosλk (T − τ) dτ−

−(−1)k
T∫

0

ν̇(τ) cosλk (T − τ) dτ = C
(2)
1k (T ),

T∫
0

µ̇(τ) sinλk (T − τ) dτ−

−(−1)k
T∫

0

ν̇(τ) sinλk (T − τ) dτ = C
(2)
2k (T ),

T∫
0

µ̇(τ)h
(i)
k (τ) dτ−

−(−1)k
T∫

0

ν̇(τ)h
(i)
k (τ) dτ = C

(2)
1k (ti),

(42)

where

C
(2)
1k (T ) =

1

λk

[
−λkl

2a
C̃1k(T )− (−1)kψ0(l) sinλkT+

+ψ0(0) sinλkT

]
,

C
(2)
2k (T ) =

1

λk

[
λkl

2a
C̃

(2)
2k (T ) + (−1)kψ0(l) cosλkT+

+ψT (0)− (−1)kψT (l)− ψ0(0) cosλkT

]
,

C
(2)
1k (ti) =

1

λk

[
−λkl

2a
C̃1k(ti)− (−1)kψ0(l) sinλkti+

+ψ0(0) sinλkti

]
, i = 1, . . . ,m.

(43)
Note that expressions C̃(s)

1k (T ), C̃
(s)
2k (T ), C̃

(s)
1k (ti) and

h
(i)
1k (τ) are given in (38) and (40).
To make integral relations (42) more readable, we in-
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troduce the following notations:

H̄
(2)
k (τ) =


cosλk (T − τ) (−1)k+1 cosλk (T − τ)
sinλk (T − τ) (−1)k+1 sinλk (T − τ)

h
(1)
k (τ) (−1)k+1h

(1)
k (τ)

. . . . . .

h
(m)
k (τ) (−1)k+1h

(m)
k (τ)

 ,

C
(2)
k (t1, . . . , tm, T ) =


C

(2)
1k (T )

C
(2)
2k (T )

C
(2)
1k (t1)
. . .

C
(2)
1k (tm)

 .

(44)
In practice, several first n harmonics of vibrations are

usually selected and the problem of control synthesis
is solved by the methods of control theory of finite-
dimensional systems. Consequently, in what follows our
constructions will be in line with this approach.

Then, given introduced notations (41) and (44), rela-
tions (39) and (42) for the first n harmonics will be writ-
ten as follows:

T∫
0

H(s)
n (τ) U (s)

n (τ)dτ = η(s)n , s = 1, 2. (45)

where U1
n (τ) = µ̇1

n(τ) = µ̇(τ),

U (2)
n (τ) =

(
µ̇
(2)
n (τ)

ν̇
(2)
n (τ)

)
=

(
µ̇(τ)
ν̇(τ)

)
,

H(s)
n (τ) =


H̄

(s)
1 (τ)

H̄
(s)
2 (τ)
. . .

H̄
(s)
n (τ)

 ,

η(s)n =


C

(s)
1 (t1, . . . , tm, T )

C
(s)
2 (t1, . . . , tm, T )

. . .

C
(s)
n (t1, . . . , tm, T )



(46)

with dimensions H
(s)
n (τ) − (n (m+ 2)× s), η(s)n −

(n (m+ 2)× 1).
Thus, integral conditions (39) and (42) obtained for

Problem 10 and Problem 20, respectively, are repre-
sented by condition (45).

From (45) it follows that the first n harmonics of sys-
tem (27) with conditions (30)–(32) or (33)–(35) are com-
pletely controllable if and only if for any vector η(s)n (46)
one can find a control U (s)

n (t), t ∈ [0, T ], satisfying con-
dition (45).

5 Solution to the Problems
Note that the left-hand part of condition (45) is a linear

operation generated by the control function U (s)
n (τ) on

the time interval [0, T ], and functionals (7) or (8) are
norms of some space L2.

Optimal control problems with integral condition (45)
given functional (7) or (8) can be treated as a moment
problem, and a solution to these problems should be
sought with the use of the moment problem [Krasovsky,
1968]. To solve the finite-dimensional (for k =
1, 2, . . . , n) moment problem for Problem 1 with func-
tional (7) and integral conditions (39) (or (3.19) for
s = 1) one needs to find the values p(1)k , q(1)k , γ(1)ik ,
k = 1, . . . , n, i = 1, . . . ,m, linked by the condition

n∑
k=1

[
p
(1)
k C

(1)
1k (T ) + q

(1)
k C

(1)
2k (T )+

+

m∑
i=1

γ
(1)
ik C

(1)
1k (ti)

]
= 1,

(47)

for which

(ρ1n)
2 = min

(47)

T∫
0

(h1n)
(2)

(τ)dτ, (48)

where

h1n(τ) =

n∑
k=1

[
p
(1)
k cosλk (T − τ)+

+q
(1)
k sinλk (T − τ) +

m∑
i=1

γ
(1)
ik h

(i)
k (τ)

]
.

(49)

To determine the values p
(1)0
k , q

(1)0
k , γ(1)0ik , k =

1, . . . , n, that minimize (48) and satisfy (47), we intro-
duce the function

f1n =

T∫
0

(
h1n(τ)

)2
dτ + β1n

[ n∑
k=1

(
p
(1)
k C

(1)
1k (T )+

+q
(1)
k C

(1)
2k (T ) +

m∑
i=1

γ
(1)
ik C

(1)
1k (ti)

)
− 1

]
,

where β1n is the undetermined Lagrange multiplier.
Based on this method, we calculate the derivatives of
the function f1n with respect to p

(1)
k , q(1)k , γ(1)ik , k =

1, . . . , n, i = 1, . . . ,m, set them to zero, given nota-
tion (49), (40), and add condition (47) to the obtained
equations to arrive at the closed system 2n + mn + 1
of algebraic equations with respect to the same unknown
quantities p(1)k , q(1)k , γ(1)ik , k = 1, . . . , n, i = 1, . . . ,m,
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and β1n:
n∑
j=1

[
a
(1)
jk p

(1)
j + b

(1)
jk q

(1)
j +

m∑
α=1

c
(1α)
jk γ

(1)
αj

]
=

= −β1n
2
C

(1)
1k (T ),

n∑
j=1

[
d
(1)
jk p

(1)
j + e

(1)
jk q

(1)
j +

m∑
α=1

f
(1α)
jk γ

(1)
αj

]
=

= −β1n
2
C

(1)
2k (T ),

n∑
j=1

[
a
(1i)
jk p

(1)
j + b

(1i)
jk q

(1)
j +

m∑
α=1

g
(1αi)
jk γ

(1)
αj

]
=

= −β1n
2
C

(1)
1k (ti),

n∑
k=1

[
p
(1)
k C

(1)
1k (T ) + q

(1)
k C

(1)
2k (T )+

+

m∑
i=1

γ
(1)
ik C

(1)
1k (ti)

]
= 1,

k = 1, . . . , n, i = 1, . . . ,m,

(50)

where

a
(1)
jk =

T∫
0

cosλj (T − τ) cosλk (T − τ) dτ,

b
(1)
jk =

T∫
0

sinλj (T − τ) cosλk (T − τ) dτ,

c
(1α)
jk =

T∫
0

h
(α)
j (τ) cosλk (T − τ) dτ,

d
(1)
jk =

T∫
0

cosλj (T − τ) sinλk (T − τ) dτ,

e
(1)
jk =

T∫
0

sinλj (T − τ) sinλk (T − τ) dτ,

f
(1α)
jk =

T∫
0

h
(α)
j (τ) sinλk (T − τ) dτ,

a
(1i)
jk =

T∫
0

cosλj (T − τ)h
(i)
k (τ) dτ,

b
(1i)
jk =

T∫
0

sinλj (T − τ)h
(i)
k (τ) dτ,

g
(1αi)
jk =

T∫
0

h
(α)
j (τ)h

(i)
k (τ) dτ.

(51)

Let the quantities p(1)0k , q(1)0k , γ(1)0ik , k = 1, . . . , n, i =
1, . . . ,m, and β0

1n be the solution to the closed system of
algebraic equations (50). Then, by (49), (48), we have

h01n(τ) =

n∑
k=1

[
p
(1)0
k cosλk (T − τ)+

+q
(1)0
k sinλk (T − τ) +

m∑
i=1

γ
(1)0
ik h

(i)
k (τ)

]
,

(ρ01n)
2 =

T∫
0

(
h01n(τ)

)2
dτ.

(52)

Optimal functions µ̇(1)0
n (τ) for any n = 1, 2, . . . are

represented in the form

µ̇(1)0
n (τ) =

1

(ρ01n)
2
h01n(τ).

Then it follows that

µ(1)0
n (t) =

1

(ρ01n)
2

t∫
0

h01n(τ)dτ+S1, t ∈ [0, T ] , (53)

where S1 is the constant of integration. Given that
µ
(1)0
n (0) = S1, from consistency conditions (9) we have
S1 = φ0(0).

Thus, the function of the optimal displacement func-
tion of the left end of the string, or the optimal boundary
control µ(1)0

n (τ), τ ∈ [0, T ], by equations (40), (52), and
(53), is represented as:
for tj−1 ≤ t < tj , j = 1, 2, . . . ,m, t0 = 0:

µ(1)0
n (t) =

=
1

(ρ01n)
2

n∑
k=1

1

λk

[
F

(1)
jk

(
p
(1)0
k , q

(1)0
k , γ

(1)0
jk , λk, T, ti, t

)
+

+ G
(1)
jk

(
p
(1)0
k , q

(1)0
k , γ

(1)0
jk , λk, T, ti

)]
+ φ0(0),

(54)
where

F
(1)
jk

(
p
(1)0
k , q

(1)0
k , γ

(1)0
jk , λk, T, ti, t

)
=

= −p(1)0k sinλk (T − t) + q
(1)0
k cosλk (T − t)−

−
j∑
i=1

γ
(1)0
ik sinλk (ti − t) ,

G
(1)
jk

(
p
(1)0
k q

(1)0
k , γ

(1)0
jk , λk, T, ti

)
=

= p
(1)0
k sinλkT − q

(1)0
k cosλkT +

j∑
i=1

γ
(1)0
ik sinλkti,
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and for tm ≤ t ≤ tm+1 = T :

µ(1)0
n (t) =

1

(ρ01n)
2

n∑
k=1

1

λk

[
− p

(1)0
k sinλk (T − t)+

+q
(1)0
k cosλk (T − t) + p

(1)0
k sinλk (T − tm)−

−q(1)0k cosλk (T − tm)

]
+ φ0(0).

(55)
Thus, the solution to Problem 1 is represented by equa-
tions (54) and (55).

To solve the finite-dimensional (given k = 1, 2, . . . , n)
moment problem for Problem 2 with functional (8) and
integral conditions (42) (or (45) for s = 2) one needs
to find the quantities p2k, q2k, γ2ik, k = 1, 2, . . . , n, i =
1, . . . ,m, linked by the condition

n∑
k=1

[
p
(2)
k C

(2)
1k (T ) + q

(2)
k C

(2)
2k (T )+

+

m∑
i=1

γ
(2)
ik C

(2)
1k (ti)

]
= 1,

(56)

for which

(ρ2n)
2 = min

(56)

T∫
0

[
h21n(τ) + h22n(τ)

]
dτ, (57)

where

h1n(τ) =

n∑
k=1

[
p
(2)
k cosλk (T − τ)+

+q
(2)
k sinλk (T − τ) +

m∑
i=1

γ
(2)
ik h

(i)
k (τ)

]
,

h2n(τ) =

n∑
k=1

(−1)
k+1

[
p
(2)
k cosλk (T − τ)+

+q
(2)
k sinλk (T − τ) +

m∑
i=21

γ
(2)
ik h

(i)
k (τ)

]
.

(58)

Similarly, solving the problem of minimizing func-
tional (57), subject to condition (56), we find the re-
quired quantities p(2)0k , q(2)0k , γ(2)0ik , k = 1, 2, . . . , n,
i = 1, . . . ,m. Then, from (57) and (58) we have:

(ρ02n)
2 =

T∫
0

[ (
h01n(τ)

)2
+
(
h02n(τ)

)2 ]
dτ,

h01n(τ) =

n∑
k=1

[
p
(2)0
k cosλk (T − τ)+

+q
(2)0
k sinλk (T − τ) +

m∑
i=1

γ
(2)0
ik h

(i)
k (τ)

]
,

h02n(τ) =

n∑
k=1

(−1)
k+1

[
p
(2)0
k cosλk (T − τ)+

+q
(2)0
k sinλk (T − τ) +

m∑
i=1

γ
(2)0
ik h

(i)
k (τ)

]
.

(59)

Thus, the functions of optimal string ends displace-
ment, i.e., the optimal boundary controls µ(2)0

n (t) and
ν
(2)0
n (t), τ ∈ [0, T ], by equations (40) and (59), are rep-

resented as:
for tj−1 ≤ t < tj , j = 1, 2, . . . ,m, t0 = 0:

µ(2)0
n (t) =

1

(ρ02n)
2
×

×
n∑
k=1

1

λk

[
F

(2)
jk

(
p
(2)0
k , q

(2)0
k , γ

(2)0
jk , λk, T, ti, t

)
+

+G
(2)
jk

(
p
(2)0
k , q

(2)0
k , γ

(2)0
jk , λk, T, ti

)]
+ φ0(0),

ν(2)0n (t) =
1

(ρ02n)
2
×

×
n∑
k=1

(−1)
k+1

λk

[
F

(2)
jk

(
p
(2)0
k , q

(2)0
k , γ

(2)0
jk , λk, T, ti, t

)
+

+G
(2)
jk

(
p
(2)0
k , q

(2)0
k , γ

(2)0
jk , λk, T, ti

)]
+ φ0(l),

(60)
where

F
(1)
jk

(
p
(1)0
k , q

(1)0
k , γ

(1)0
jk , λk, T, ti, t

)
=

= −p(1)0k sinλk (T − t) + q
(1)0
k cosλk (T − t)−

−
j∑
i=1

γ
(1)0
ik sinλk (ti − t) ,

G
(1)
jk

(
p
(1)0
k , q

(1)0
k , γ

(1)0
jk , λk, T, ti

)
=

= p
(1)0
k sinλkT − q

(1)0
k cosλkT +

j∑
i=1

γ
(1)0
ik sinλkti,

and for tm ≤ t ≤ tm+1 = T :

µ(2)0
n (t) =

1

(ρ02n)
2

n∑
k=1

1

λk

[
− p

(2)0
k sinλk (T − t)+

+q
(2)0
k cosλk (T − t) + p

(2)0
k sinλk (T − tm)−

−q(2)0k cosλk (T − tm)

]
+ φ0(0),

ν(2)0n (t) =
1

(ρ02n)
2

n∑
k=1

(−1)k+1

λk

[
− p

(2)0
k sinλk (T − t)+

+q
(2)0
k cosλk (T − t) + p

(2)0
k sinλk (T − tm)−

−q(2)0k cosλk (T − tm)

]
+ φ0(l).

(61)
The solution to Problem 2 is represented by equations
(60) and (61).
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Thus, having explicit forms of the optimal bound-
ary control function µ

(s)0
n (t) and ν

(s)0
n (t), t ∈ [0, T ],

s = 1, 2, we can construct the corresponding deflec-
tion function Q(s)0

n (x, t). Substituting the obtained ex-
pressions for the optimal controls µ(s)0

n (t) and ν(s)0n (t),
τ ∈ [0, T ], s = 1, 2 into (28) and (29), and substituting
the expression obtained for F (s)0

k (t) into (36), we obtain
the function V (s)0

k (t), t ∈ [0, T ], s = 1, 2, k = 1, . . . , n.
Then, from (26) we have

V (s)0
n (x, t) =

n∑
k=1

V
(s)0
k (t) sin

πk

l
x, (62)

where

V
(s)0
k (t) = V

(s)
k (0) cosλkt+

1

λk
V̇

(s)
k (0) sinλkt+

+
1

λk

t∫
0

F
(s)0
k (τ) sinλk(t− τ)dτ,

and from (15) and (16) it follows that functions
W

(s)0
n (x, t), s = 1, 2, take the form:

W (1)0
n (x, t) = (1− x

l
)µ(1)0
n (t),

W (2)0
n (x, t) =

=
[
ν(2)0n (t)− µ(2)0

n (t)
] x
l
+ µ(2)0

n (t).

(63)

Then, by (11), given (62) and (63), for Problem 1 and
Problem 2, respectively, we have

Q(1)0
n (x, t) =

n∑
k=1

V
(1)0
k (t) sin

πk

l
x+

+(1− x

l
)µ(1)0
n (t),

Q(2)0
n (x, t) =

n∑
k=1

V
(2)0
k (t) sin

πk

l
x+

+
[
ν(2)0n (t)− µ(2)0

n (t)
] x
l
+ µ(2)0

n (t).

(64)

Thus, for the first n harmonics, the optimal string de-
flection functions Q(1)0

n (x, t) and Q(2)0
n (x, t) are repre-

sented by formula (64).

6 Example (with a Computational Experiment)
Next, we illustrate the above for Problem 1 for m = 1.

Suppose that for an intermediate instant of time t1 (0 =
t0 < t1 < t2 = T ) the values of deflection of the points
(shape) of the string is specified in the form

Q(x, t1) = φ1(x), 0 ≤ x ≤ l. (65)

Applying the approach detailed above, we construct
the optimal boundary control µ0

n(t) for n = 1 (hence,

k = 1). In this case, to determine the values of the quan-
tities p1, q1, γ11, and β1, by (50) and (51) (i = 1, α = 1),
we have the following system of algebraic equations:

a11p1 + b11q1 + c
(1)
11 γ11 = −β1

2
C11(T ),

d11p1 + e11q1 + f
(1)
11 γ11 = −β1

2
C21(T ),

a
(1)
11 p1 + b

(1)
11 q1 + g

(11)
11 γ11 = −β1

2
C11(t1),

C11(T )p1 + C21(T )q1 + C11(t1)γ11 = 1,

(66)

where

a11 =

T∫
0

cosλ1 (T − τ) cosλ1 (T − τ) dτ =

=
T

2
+

1

4λ1
sin 2λ1T,

b11 = d11 =

T∫
0

cosλ1 (T − τ) sinλ1 (T − τ) dτ =

=
1

2λ1
sin2 λ1T,

e11 =

T∫
0

sinλ1 (T − τ) sinλ1 (T − τ) dτ =

=
T

2
− 1

4λ1
sin 2λ1T,

a
(1)
11 = c

(1)
11 =

T∫
0

h
(1)
1 (τ) cosλ1 (T − τ) dτ =

=
1

2λ1
sinλ1t1 cosλ1T +

t1
2
cosλ1 (T − t1) ,

b
(1)
11 = f

(1)
11 =

T∫
0

h
(1)
1 (τ) sinλ1 (T − τ) dτ =

=
1

2λ1
sinλ1t1 sinλ1T +

t1
2
sinλ1 (T − t1) ,

g
(11)
11 =

T∫
0

h
(1)
1 (τ)h

(1)
1 (τ) dτ =

=
t1
2
+

1

4λ1
sin 2λ1t1.

In this section, to make the notation more readable we
omit the superscript C11(T ), C21(T ), C11(t1), which
stands for Problem 1, i.e., s = 1.

Below we present the results of calculations for a spe-
cific example. We test the performance of the proposed
approach by comparing the behavior of the string de-
flection function and its derivative to the corresponding
functions that are given. For the sake of definiteness, as-

sume that t1 =
2l

a
, T =

4l

a
, λ1 =

aπ

l
, and, respectively,
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Figure 1. Graph of the function V 0
1 (t).

t1λ1 = 2π, Tλ1 = 4π, λ1(T − t1) = 2π. Assume that

a =
1

6
, l = 1. For the chosen values of a, l we have

t1 = 12, T = 24, λ1 =
π

6
. Let the following initial state

be specified for t = 0:

φ0(x) = 0.5x3 − 0.4x2 − 0.1x,

ψ0(x) = 0.4x2 − 0.4x,

for t1 = 12, an intermediate state is given:

φ1(x) = 0.2x2 − 0.2x,

and the following final states are given for T = 24:

φT (x) = 0, ψT (x) = 0.

The coefficients of the Fourier series for the above func-
tions φ0 (x), ψ0 (x), φ1 (x), φT (x), ψT (x) for n = 1
are defined by the following relations:

φ
(0)
1 = − 14

5π3
, ψ

(0)
1 = − 16

5π3
, φ

(1)
1 = − 8

5π3
,

φ
(T )
1 = 0, ψ

(T )
1 = 0.

The following relations hold for the selected functions:

φ0(0) = φ0(1) = ψ0(0) = ψ0(1) = φ1(0) =

= φ1(1) = φT (0) = ψT (0) = φT (1) = ψT (1) = 0,

that satisfy the consistency conditions.
From (30)–(32) we have

V1(0) = − 14

5π3
, V̇1(0) = − 16

5π3
, V1(t1) = − 8

5π3
,

V1(T ) = 0, V̇1(T ) = 0,

C11(T ) = − 7

5π2
, C11(t1) = − 3

5π2
, C21(T ) =

48

5π3
.

Therefore, solving the system of algebraic equations ob-
tained by (50), we have

p01 = − 20π4

25π2 + 1152
, q01 =

120π3

25π2 + 1152
,

γ01 =
5π4

25π2 + 1152
, β0

1 = − 300π6

25π2 + 1152
.

Then, by equations (54), (55), we determine the dis-
placement function µ0

1(t), i.e., the optimal boundary

control, which has the following explicit form:

µ0
1 (t) = − 24

5π4
− 3

5π3
sin

π

6
t+

24

5π4
cos

π

6
t,

t ∈ [0, 12),

µ0
1 (t) = − 24

5π4
− 4

5π3
sin

π

6
t+

24

5π4
cos

π

6
t,

t ∈ [12, 24].

The boundary energy integral (7) takes the following
value:

24∫
0

[ (
µ0
1 (t)

)′]2
dt ≈ 0.0097.

We obtain the following explicit expressions for the
functions V 0

1 (t), t ∈ [0, 24]:

V 0
1 (t) =

(
− 14

5π3
+

t

10π3

)
cos

π

6
t+

+

(
− 99

5π4
+

4t

5π4

)
sin

π

6
t, t ∈ [0, 12),

V 0
1 (t) =

(
− 48

15π3
+

2t

15π3

)
cos

π

6
t+(

−100

5π4
+

4t

5π4

)
sin

π

6
t, t ∈ [12, 24].

(67)

Figure 1 presents the graph of the function V 0
1 (t), t ∈

[0, 24]. It shows that the forced vibration represented by
equation (27), whose solution is represented by formula
(67), as a result of damping satisfies the final condition.

Under the influence of the constructed optimal bound-
ary control µ0

1(t) the corresponding optimal string de-
flection function is determined by equation (64) and has
the following explicit form:

Q0
1(x, t) =

[(
− 14

5π3
+

t

10π3

)
cos

π

6
t+

+

(
− 99

5π4
+

4t

5π4

)
sin

π

6
t

]
sinπx+

+(1− x)

(
− 24

5π4
− 3

5π3
sin

π

6
t+

24

5π4
cos

π

6
t

)
,

t ∈ [0, 12),

Q0
1(x, t) =

[(
− 48

15π3
+

2t

15π3

)
cos

π

6
t+

+

(
−100

5π4
+

4t

5π4

)
sin

π

6
t

]
sinπx+

+(1− x)

(
− 24

5π4
− 4

5π3
sin

π

6
t+

24

5π4
cos

π

6
t

)
,

t ∈ [12, 24].

Hence, from the obtained expressions it follows that at
the initial, intermediate and final instants of time (t =
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Figure 2. Graphs of the functions Q0
1(x, 0) (dotted line) and φ0(x)

(solid line).

Figure 3. Graphs of the functions Q̇0
1(x, 0) (dotted line) and ψ0(x)

(solid line).

Figure 4. Graphs of the functions Q0
1(x, 12) (dotted line) and φ1(x)

(solid line).

Figure 5. Graph of the function Q̇0
1(x, 24).

0, 12, 24) the explicit expressions of functionsQ0
1(x, t)

and Q̇0
1(x, t) have the following form:

Q0
1(x, 0) = − 14

5π3
sinπx,

Q̇0
1(x, 0) = − 16

5π3
sinπx− 1

10π2
(1− x),

Q0
1(x, 12) = − 8

5π3
sinπx,

Q1(x, 24) = 0,

Q̇0
1(x, 24) = − 2

15π2
(1− x).

The graphical representations of functions Q0
1(x, 0)

and φ0(x), Q̇0
1(x, 0) and ψ0(x), Q0

1(x, 12) and φ1(x),
Q̇0

1(x, 24) are shown in Figs. 2–5.
To compare the deviation of the constructed functions

from the given ones and to analyze the obtained results,

we introduce the following notations:

ε(x, tj) =
∣∣Q0

1(x, tj)− φj(x)
∣∣ ,

E(x, tj) = max
0≤x≤1

ε(x, tj),

⌢
ε (x, tδ) =

∣∣∣Q̇0
1(x, tδ)− ψδ(x)

∣∣∣ ,
⌢

E (x, tδ) = max
0≤x≤1

⌢
ε (x, tδ),

where j = 0, 1, 2, δ = 0, 2 (the instant of time T corre-
sponds to tj = tδ = t2, i.e., j = δ = 2). The following
values were obtained when evaluating the discrepancy
between the above functions:

E(x, 0) ≈ 0.02696,

1∫
0

ε (x, 0) dx ≈ 0.01569,

⌢

E (x, 0) ≈ 0.01013,

1∫
0

⌢
ε (x, 0) dx ≈ 0.00506,

⌢

E (x, 12) ≈ 0.00021,

1∫
0

⌢
ε (x, 12) dx ≈ 0.00124,

⌢

E (x, 24) ≈ 0.01351,

1∫
0

⌢
ε (x, 24) dx ≈ 0.00675.

Thus, for n = 1, the above calculations and compar-
ative analysis of the results showed that the behavior of
the string deflection functions and their derivatives under
the influence of the constructed optimal boundary con-
trol was close enough to the given functions. Therefore,
we conclude that the proposed constructive approach can
be used for practical applications since the absolute and
integral values of the maximum deviation prove quite ac-
ceptable.

7 Conclusion
We have contributed a constructive method for deriv-

ing an optimal boundary control of the oscillation pro-
cess of a homogeneous string with given intermediate
conditions on the values of the deflection function. The
quality criterion is the integral of the boundary energy
specified over the entire time interval. The results ob-
tained here can be instrumental in constructing optimal
boundary controls of vibration processes in physical and
engineering systems.
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