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Abstract: The paper compares the algorithms based on neural networks and the Monte-
Carlo method as applied to nonlinear estimation problems solved in the framework of the
Bayesian approach. Two variants are considered. The first variant is a search of optimal
estimates that are conditional mathematical expectations and, in a general case, depend on
measurements in a nonlinear way. The second variant involves linear optimal estimates.
In designing them, the root-mean-square criterion is minimized in the class of estimates
that are linearly dependent on measurements. The comparison results are discussed.
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1. INTRODUCTION

In practice it is rather common that the time-invariant
vector needs to be estimated by the measurements
whose dependence on this vector is nonlinear. The
problems like this are, for instance, to be solved in
navigational data processing (Stepanov, 1998;
Bergman, 1999). In solving this problem the theory
of optimal estimation based on the Bayesian
approach is used. The latter allows finding optimal
(minimum variance) estimates as an a posteriori
mathematical expectation (corresponding to the a
posteriori probability density function — p.d.f.) of the
vector under estimation. If the problem is nonlinear,
the a posteriori p.d.f. is not Gaussian. This causes the
need for designing efficient suboptimal algorithms
that do not involve a large size (quantity) of
calculations. There are various suboptimal
algorithms: the point mass method; the Monte-Carlo
method and its modifications (particle filters, for
example), the method based on poly-Gaussian, and
various Gaussian approximations of a posteriori

p.d.f., etc. (Jazvinski, 1970; Stepanov, 1998;
Bergman, 1999; Daum, 2005). Besides, considerable
recent attention has been focused on the possibilities
of wusing artificial neural networks (NN), in
particular, the so-called supervised learning NN
(Haykin, 1994, 2001, Stepanov and Amosov 2006).
A distinguishing feature of the supervised NN is the
fact that it needs a training set for learning NN.
However, for many applied estimation problems (for
example, in solving navigation problems) it is
impossible to obtain a training set from experimental
data. Nevertheless, in these conditions the training
set can be formed by simulation, using prescribed
models. Thus the NN can be considered as a
numerical procedure for calculation of Bayesian
estimates. The purpose of using NN in this case is to
develop economical, from the computational
standpoint, procedures for calculation of optimal
estimates. In this connection it is useful to compare
algorithms based on NN with those that are
traditionally used for the solution of nonlinear
estimation problems. In so doing, the Monte-Carlo



method, widely used recently, was taken as a
traditional algorithm (Zaritsky, et al., 1975, Haykin,
2001). The choice of this method is due to the fact
that it, just as NN, uses realizations of random
vectors (samples) derived by simulation in
accordance with the known models.

The paper analyzes the features of NN algorithms in
comparison with those based on the Monte-Carlo
method for two variants of the solution. The first
variant is aimed at searching optimal estimates,
representing the a posteriori  mathematical
expectations that are, in a general case, dependent on
measurements in a nonlinear way. The second case
involves linear optimal estimates. The results
obtained are illustrated by the example of the
solution of a nonlinear problem of determining a
vehicle’s position by reference beacons.

2. NONLINEAR ESTIMATION PROBLEM

Let us consider the following problem: to estimate an
x,]" by

m - dimensional measurements y =[y, ... ym]/

n -dimensional random vector x =[x,

y=s(x)+vVv, @))

where s(x) =[s;(x) sm(x)]T is the known m -

dimensional nonlinear vector-function;

v=[v .. vm]T is a random vector of

measurement errors. Suppose that the joint
p.d.f. f(x,v) for the vectors x and v is known.

For simplicity v and x are assumed to be zero mean
random vectors independent of each other, i.e.
f(x,v) = f(x)f(v). Thus, taking into account (1), it

is possible to get the p.d.f. f(x,y) for xand y
Jxy)=fX) [y (y -s(x)).
The assumptions made allow stating the problem of

finding the optimal (minimum variance) estimate
x(y) that minimizes the criterion

J = ElJe =1 @)
where ||at||2 =q’ a; E is the mathematical

expectation corresponding to f(X,y).

Two variants of the solution to this problem are
discussed below.

2.1 Nonlinear optimal estimate

It is known that the optimal estimate and the

covariance matrix of estimation errors are
determined as (Jazwinski, 1970)
X7 (y) = [ (x/y)dx, 3)

PP (y) = [(x— X% (y)(x - X% (y)) f(x/y)dx. (4)

where f(x/y) is the a posteriori (conditional) p.d.f.
for the vector x. It should be noted that the symbol
of the integral in these expressions and below
corresponds to the multiple integrals with infinite

P()pi (y)
covariance matrix) characterizes the accuracy of the
state-vector estimate for the given set of the
measurements y .

limits. The matrix (conditional error

It is well known that the problem of designing an
algorithm for the calculation of X”'(y) and

P (y) is easily solved only for the Gaussian
f(x,v) and the linear character of the function
s(x), i.e. when s(x)=Hx. For this case the

dependence of the optimal estimate on measurements
has a linear character. In all other cases there arises
the problem of designing suboptimal algorithms that
do not involve a large size of calculations. As, in
general, the dependence of the minimum variance
estimate on measurements is nonlinear, for
convenience, below the estimate (3) will be called a
nonlinear optimal estimate.

2.2 Linear optimal estimate

One of the wvariants of designing suboptimal
algorithms is reduced to finding a linear optimal
estimate instead of (3). Then the estimate is
calculated as X" (y) =X+ K[y —y"™]. The idea
of designing a linear optimal algorithm consists in
choosing the gain factor matrix K’ and the vector
y”” in such a way as to minimize the criterion (2) in

the class of linear estimates. It can be shown that the
linear optimal estimate is determined as (Medich,
1969):

&lm(y)zi-l-nyPy;,I [y_ylm]’ (5)
Klin =P P—l (6)

Xy“yy?

P = F(x—X(y))(x—X(y)' 1= Py~ P, PP, (7)

where X, yh” =y, Py, Pyy are the mathematical

expectations and the covariance matrices of the

vectors x and y, Py, is the cross covariance matrix

for x and y. Thus the problem of finding the
optimal linear estimate is reduced to calculation of
the first two moments of the joint vector that includes
the vector of the parameters being estimated x and
the measurement vector y. After these moments
have been derived, the relations (5)-(7) are used to
calculate the estimates and the corresponding
covariance matrix.

2.3 The aim of the study

The aim of the study is to analyze the possibilities of



using algorithms based on supervised NN for
deriving optimal nonlinear and linear estimates and
to discuss their peculiarities in comparison with
algorithms based on the Monte-Carlo method.

Next let us assume that x and v are the Gaussian
vectors with the mathematical expectations X=0

and V=0 and the covariance matrices P, and P, ,
ie. f(x)=N(x0,P)), f(v)=N(v;0,P,).

3. MONTE-CARLO METHOD

As is known, the Monte-Carlo method is convenient
to use when it is required to calculate integrals that
represent mathematical expectations corresponding
to certain known p.d.f. It is precisely this situation
that takes place in calculating optimal linear and
nonlinear estimates. The advantage of this algorithm
is the fact that the accuracy of calculations increases
as the number of samples grows. Let us specify the
corresponding algorithms and note their peculiarities.

3.1 Nonlinear optimal estimate

For the optimal estimate (3) and covariance (4) the
following equations hold true (Zaritsky, et al., 1975)

E {xfy (y - s(x)}
EAfy(y —s()}

e EAx=37 ()3 =37 (y)" £, (y-5(x)]
P P == ¥ ) (9)
W Efo(y—s(0)]

X7 (y)=

®

where 7, (y-s(x) = exp(—%(y =S Py - s(x))] :

Thus, in order for the optimal estimate to be
calculated, it is necessary to calculate three sets of
integrals

1M =E {xf, (y - s(0)},
L =E{f, (y - s},

M- {(x =X (=X () fo(y - s(X)} ’

representing  the  mathematical  expectations
corresponding to the function f(x). In accordance

with the Monte-Carlo method it is necessary to
simulate a set of independent-of-each-other samples

&y, j=lay, (10)
with the p.d.f. f(x)=N(x;0,Py). Then according

to (8) and (9), the nonlinear optimal estimate and its
covariance matrix can be calculated as

= S/ (b
J=1
PP (y) ~ IZ(XJ —XP (y)(x - P! (y))TH‘/ ,(12)
7=l

MC1
where p/ =1/ / Z n’ and
J=1

i = exp(—%(y —s(x/) Py (y —s(x ))] -(13)

It is not difficult to understand that the size of the
necessary calculations essentially depends on the
number of integrals to be calculated and their
complexity. The number of »-multiple integrals
needed for the calculation of an estimate is equal to
n+1, and for the calculation of the covariance
matrix —n(n+1)/2 . Therefore the total number of
integrals is determined as
Ni=(n+D(1+n/2).

The integral complexity depends on the number of
measurements.

3.2 Linear optimal estimate

Taking into account (1), it is easy to write
¥ = [s()/(0dx = E, {s(x) f (%)}, (14)
Pyy = £, 5(0s0)" [-33" + Py, ()
Py, = [xs(x)" f(x)dx = E, {xs(x)T } (16)

Using the Monte-Carlo method it is possible to write:

nfwcz
_ 1 »
Y®=uc2 Z s(xy, (17)
m J=1
LMC2
L ' T =T
Pyyz MC?2 z S(X(j))S(X(J)) -YyYy +PV,(18)
m =
n{Mcz
1 - AT
nyz nMCZ Z XU)S(XU)) . (19)
1 Jj=l

Taking into account these moments, the linear
optimal estimate and the corresponding covariance
matrix can be calculated using (5)-(7). As follows
from the relations given above, the number of #-
multiple integrals needed for the calculation of the
linear estimate is determined as

No=m+mm+1)/2+nmm=m+D)(n+m/2).

In this case the complexity of the integral does not
depend on the number of measurements.

4. NEURAL NETWORKS ALGORITHMS
The approximate solution of the estimation problem

can be found by using a supervised NN (Haykin,
1994; Stepanov and Amosov, 20006), i.e.

MWy =K (y, W), (20)



where K™ (y, \7V) is a special, in a general case,

nonlinear function; W is the matrix that specifies
the free parameters (biases and weighting
coefficients) and y is the input of the NN. The

distinguishing feature of the supervised NN is the
fact that it needs supervised learning, which allows

finding the matrix w. Supervised learning calls for
a training set and a cost function (learning criterion).
Here the training set can be derived by simulation

using the p.d.f f(x) , f,(®) and Eq. (1), i.e.

(VX j=Ln,, 21
where the pairs y), x), j=1n, are the
independent-of-each-other samples of the random
vectors with the p.d.f. f(x,y). The learning
criterion can be determined as

~ o~ 1 & ) ANNG) () G2
J<W>=7ZZHX(”—X Ny WL @2)
Jj=

where %"V (y(j ) ,W) is the estimate generated

by the NN wusing the measurements y(j)

corresponding to the realization of x)

In this case the estimation problem can be formulated
as follows: having the set (21) and the measurement
y, to find the estimate (20) that minimizes the

criterion (22). It is evident that the criterion (22)
tends to (2) as 7, increases. So the estimate (20),

optimal in the sense of the criterion (22), will be
similar to the optimal Bayesian estimate (3). Thus,
the problem of designing the estimation algorithm is
reduced to selecting and learning of the NN, i.e.

finding the parameters W determined by the
minimization of the criterion (22) formed with the
use of the training set (21).

4.1 Linear optimal estimate

For determination of the linear optimal estimate it
will be logical to use a linear NN. Taking into
consideration the dimensions of the vector to be

estimated, the linear NN ™V (y, \7V) can be written

as follows:
N (y, W) =w, + Wy, (23)

where \TV:[W0 | W] is an

dimensional matrix that includes an » - dimensional

nx(m+1)-

bias vector wo=[w;, .. Ww,] and an nxm-
dimensional matrix of weighing coefficients
W=lw, | .. | w, | w,]”, in which
w; =[wy, w,m]T are m- dimensional vectors

I=1n. This NN has a single neuron layer. The

number of neurons is the same as the dimensions of
the estimated vector x, and their activation function
that depends on the scalar argument s represents an
identical transformation (linear activation function),
ie. w(s)=s, —o0<s<owo. For the learning of the

linear NN it is convenient to use the ordinary rule of
Widrow—Hoff. It is not difficult to show that the

estimate X (y, \7\’) derived by the measurements y

with the use of NN (23) trained in accordance with
(22) can be represented as (Stepanov and Amosov,
2006):

A N ~ % * * 71 J—
Wy, W)=x +ny(Pyy) [y-¥'1.

—* —% * *
where X 5y ; Py, Py

the mathematical expectations and the corresponding

are the sample values of

)
covariance matrices, for example, X = LZ:x(j) .
n ‘5
It is clear that these procedures result in the estimate
that is similar to the estimate obtained by the Monte-
Carlo method. At the same time it should be noted
that no matrix inversion is needed when using NN.
This is due to the fact that learning results in the
formation of w;, W, which makes it possible to

directly evaluate the estimate (23). This fact can be
regarded as an advantage of NN-based algorithms.
However it should be noted that the algorithm
considered above does not provide a calculation of
the error covariance matrix.

4.2. Nonlinear optimal estimate

To design a “good” estimation algorithm based on a
nonlinear NN, it is necessary to choose a “good” NN
and a “good” learning algorithm, i.e. an algorithm
that provides such a W that minimizes the learning
criterion (22). Multi-layer feed-forward NN are used
in this paper (Haykin, 1994). Further, in particular, a
two-layer NN with feed-forward connections is used,
with m -inputs, g -neurons in the hidden layer, and

n- neurons in the output layer. In this case the

estimates fclN v (y), i=1.n can be written as

q m
5 2 1 1 2
N =y D wino | Yy ) +who | |+ wio |
p=l j=1
(24)
where o(s)=ths, y(s)=s are the activation

functions for the neurons of the hidden and the

1 1 2 2 T
output layers; (W o, W, ;). (Wjg, wy), u=1g,

j=1.m, i=1.n are biases and weights of neurons

of the hidden and the output layers. For the learning
of the NN was used the back-propagation algorithm.



5. NONLINEAR NAVIGATION PROBLEM

Consider the estimation problem of an unknown

x=(x1,%)"
position on the plane with the wuse of the
measurements of the ranges to the two reference
beacons whose coordinates are assumed to be
known. These measurements can be written as

vector determining a vehicle’s

k

k i i k
yi =s5;(x)+v; :\/(xl _xl)z +(x2 _x2)2 +vi,

where x' = (x!,x} )1, i=1.2 are coordinates of the

k
beacons; v; are the measurement errors. Suppose

that x = (xl,xz)T is the zero mean Gaussian vector

with a diagonal covariance matrix and similar

variances Gé vk

; are zero mean, independent-of-

each-other and of x, Gaussian random values with

variances equal to #?. Under the
2

PO = GoEz , PV

where E, and E,; are 2x2 and 2ix2i unit

similar

assumptions  made =r’E 2is

matrices. It is also supposed that o, =500m;

r=30m; x' =(3000m, 0m)"

2 = (0 m,3000 m)"

Below are the simulation results obtained with the
use of the following algorithms:

MC1 - the nonlinear optimal algorithms (11), (12)
based on the Monte-Carlo method; MC2 — the linear
optimal algorithms using the Monte-Carlo method
for the calculation of (14)-(16); NN1 — the nonlinear
optimal algorithm (24) using the two-layer nonlinear
NN with m inputs, ¢ =20 neurons in the hidden

layer and two neurons in the output layer; NN2 — the
linear optimal algorithm using the single-layer linear
NN (23) with m inputs and two output neurons.

The Cramer-Rao inequality was used to evaluate the
potential accuracy. The latter makes it possible to
find the lower Cramer-Rao boundary (CRB) for the
unconditional covariance matrix of optimal estimate
errors (Stepanov, 1998, Bergman 1999). It can be
shown that for the problems considered the
inequality can be written as

G7 >3, (25)
where

-1
J_lz[_ _I{ds (x) ds(x)}/( )dx] 26

6" = [ [x=37 - ) f(xy)dndy » )

is the unconditional covariance matrix for the
optimal estimation errors. It is easy to show that the

square roots of the diagonal -elements (26),
determining the CRB, can be calculated as

“1/2
CRB 12
Gy |+ — .
2
GO m

The square roots of the diagonal elements (27) are
the root-mean- square (RMS) errors for the
corresponding algorithms. They characterize the
accuracy of algorithms needed for comparison. The
diagonal elements (27) were calculated as

N 1 L i 2 i
G 7~ le () -5/ )7, (28)

u=1,2;5s=MC1, MC2, NN 1, NN2.

CRB
m

GNNZ which are the CRB and RMS errors at a

m
different number of measurements m =2k,
corresponding to the Monte-Carlo and NN

MC] MC2 NN1

Figure 1 presents & and c,, Cm > Cm

k=1.2..

methods for the linear and nonlinear estimates.

o, m
70
O_]\/NZ O_M( 2
TNl
50 =
NN1
30 .”'\_.. )
TN o O_M(,l
10 :
1 2 3 4 m

Fig. 1. RMS errors.

The simulation results are shown for one of the
component coordinates. They look similar for the
other component as well. For the sake of simplicity
the indices m are not shown in the plots. The

MC1

numbers of the samples n and ni\/fcz for the

nonlinear and linear optimal algorithms based on the
Monte-Carlo method are equal to 30000 and 3000.
The number of the samples for learning of the

NN1 NN2

nonlinear n, and linear n, algorithms based

on the NN is equal to 3000. The number of the
samples for testing is L=300. The analysis of the
plots allows making the following conclusions.

As one would expect, the RMS errors for linear and
nonlinear optimal estimates calculated both with the
use of the Monte-Carlo method and NN are the same.

This is due to the fact that the numbers n “,



NN2

MC2 NN1 and nz

n“ ., n
1 2

were chosen such that

calculation errors in each of these methods would not
have affected the result.

The RMS errors for the linear optimal estimates are
different from the CRB because of the errors caused
by the linear character of the algorithms. The RMS
errors for the nonlinear estimates do not practically
differ from the CRB. The number of the samples

n 2 that provides a low level of calculation errors

in the Monte-Carlo method at the realization of linear
estimates is close to the number of the samples

njzwV 2 used in NN learning.

At the calculation of nonlinear estimates the number

1 NN1

nl substantially exceeds n2 , which, in its

turn, differs little from ngm .

6. CONCLUSIONS

It is possible to outline two variants of applications
of supervised NN for nonlinear estimation problems.
The first line presumes the availability of a training
set from experimental data. In this case it is possible
to speak about potential adaptive properties of the
algorithms designed. This situation is not specific for
some applied problems.

For the second line NN is employed as a numerical
procedure for realization of traditional (Bayesian)
algorithms. The training set is formed by simulation
using prescribed models. In this case there is no
question of any adaptive properties due to NN. The
goal is to develop economical, from the
computational standpoint, procedures, using NN for
calculation of optimal estimates. The paper has
considered the peculiarities of using NN in
estimation problems exactly for this case in
comparison with the Monter-Carlo method. The
results of the studies allow pointing out the
following.

In designing linear estimates the problems of
choosing the NN itself and its learning are easy to
solve. It is explained by the fact that it is possible to
use the linear NN which is easy to learn using the

MC2

] and

rule of Widrow—Hoff. The numbers »n

a2 are similar, thus the size of calculations
needed for the Monte-Carlo method and for NN
learning is also comparable in this case.

In searching for nonlinear estimates there arises the
problem of choosing NN and the algorithm for its
learning as the size of calculations essentially
depends on the type of NN. In the realization of the

MC2

nonlinear algorithm the number n in the

example considered exceeds njzw 2 by an order. The

question of relation between these numbers needs
additional study with consideration of possible
reduction of the size of calculations with the use of
various modifications of the Monte-Carlo method,
particle and unscented filters and so on (Daum,
2005).

In calculating estimates with the use of the neural
network after its learning, the algorithm for finding
estimates becomes trivial and is easier to realize than
with the use of the Monte-Carlo method.

An essential disadvantage of NN algorithms is the
fact that their designing does not presume the
calculation of the error covariance matrix. In a
number of applied problems, particularly, in
navigational problems such characteristic is of great
importance. This means that one more NN is
required for deriving it.
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