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Abstract. We consider two-point non-self-adjoint boundary eigenvalue problems for linear
matrix differential operators. The coefficient matrices in the differential expressions and the
matrix boundary conditions are assumed to depend analytically on the complex spectral
parameter λ and on the vector of real physical parameters p. We study perturbations of
semi-simple multiple eigenvalues as well as perturbations of non-derogatory eigenvalues under
small variations of p. Explicit formulae describing the bifurcation of the eigenvalues are derived.
Application to the problem of excitation of unstable modes in rotating elastic continua revealed
that selection of the unstable modes in the subcritical speed range, is governed by the exceptional
points at the corners of the singular eigenvalue surfaces—‘double coffee filter’ and ‘viaduct’—
which are associated with the crossings of the unperturbed Campbell diagram with the definite
Krein signature.

1. Introduction

Non-self-adjoint boundary eigenvalue problems for matrix differential operators describe
distributed non-conservative systems with the coupled modes and appear in structural
mechanics, fluid dynamics, magnetohydrodynamics, to name a few. Practical needs for
optimization and rational experiment planning in modern applications allow both the differential
expression and the boundary conditions to depend analytically on the spectral parameter and
smoothly on several physical parameters (which can be scalar or distributed) [4, 10, 19, 22, 23].
In the multiparameter operator families, eigenvalues with various algebraic and geometric
multiplicities can be generic [3]. In some applications additional symmetries yield the existence
of spectral meshes [23] in the plane ‘eigenvalue versus parameter’ containing infinite number of
nodes with the double eigenvalues (doublets) [8, 11, 18, 19, 21, 23]. As it has been pointed
out already by Rellich [2] sensitivity analysis of multiple eigenvalues is complicated by their
non-differentiability as functions of several parameters.

An increasing number of multiparameter non-self-adjoint boundary eigenvalue problems and
the need for simple constructive estimates of critical parameters and eigenvalues as well as
for verification of numerical codes, require development of applicable methods, allowing one to
track relatively easily and conveniently the changes in simple and multiple eigenvalues and the
corresponding eigenvectors due to variation of the differential expression and especially due to
transition from one type of boundary conditions to another one without discretization of the
original distributed problem.



A systematical study of bifurcation of eigenvalues of a non-self-adjoint linear operator L0

due to perturbation L0 + εL1, where ε is a small parameter, dates back to 1950s. Apparently,
Krein was the first who derived a formula for the splitting of a double eigenvalue with the
Jordan block at the Hamiltonian 1 : 1 resonance (the Krein collision of the eigenvalues with
the opposite Krein signature [6]), which was expressed through the generalized eigenvectors of
the double eigenvalue [5]. The eigenvalues of the same Krein signature avoid collisions under
Hamiltonian perturbations. Recent works on friction-induced oscillations in rotating continua
[8, 11, 18, 19, 21, 23] have rosen a question on the instabilities caused by the interacting
eigenvalues of the same Krein type in non-self-adjoint boundary eigenvalue problems for operator
matrices when the perturbation is non-Hamiltonian.

2. Mathematical setting

We consider the boundary eigenvalue problem

L(λ,p)u = 0, Uk(λ,p)u = 0, k = 1, . . . ,m, (1)

where u(x) ∈ C
N ⊗ C(m)[0, 1]. The differential expression Lu of the operator is

Lu =

m∑

j=0

lj(x)∂
m−j
x u, lj(x) ∈ C

N×N ⊗ C(m−j)[0, 1], det[l0(x)] 6= 0, (2)

and the boundary forms Uku are

Uku =
m−1∑

j=0

Akju
(j)
x (x = 0) +

m−1∑

j=0

Bkju
(j)
x (x = 1), Akj ,Bkj ∈ C

N×N . (3)

Introducing the block matrix U := [A,B] ∈ C
mN×2mN and the vector

u
T :=

(
uT (0),u(1)T

x (0), . . . ,u(m−1)T
x (0),uT (1),u(1)T

x (1), . . . ,u(m−1)T
x (1)

)
∈ C

2mN (4)

the boundary conditions can be rewritten as Uu = [A,B]u = 0, where A = (Akj)|x=0 ∈ C
mN×mN

and B = (Bkj)|x=1 ∈ C
mN×mN . It is assumed that the matrices lj , A, and B are analytic

functions of the complex spectral parameter λ and smooth functions of the real vector of physical
parameters p ∈ R

n.
Let us introduce a scalar product < u,v >:=

∫ 1
0 v∗udx, where the asterisk denotes complex-

conjugate transpose (v∗ := vT ). Taking the scalar product of Lu and a vector-function v and
integrating it by parts yields the Lagrange formula for the case of operator matrices (cf. [16])

Ω(u,v) :=< Lu,v > − < u,L†v >= v
∗Lu, (5)

with the adjoint differential expression L†v :=
∑m

q=0(−1)m−q∂
m−q
x

(
l∗qv
)
, the vector v

v
T :=

(
vT (0),v(1)T

x (0), . . . ,v(m−1)T
x (0),vT (1),v(1)T

x (1), . . . ,v(m−1)T
x (1)

)
∈ C

2mN (6)

and the block matrix L := (lij)

L =

(
−L(0) 0

0 L(1)

)
, L(x) =




l00 l01 · · · l0m−2 l0m−1

l10 l11 · · · l1m−2 0
...

... . .
. ...

...

lm−20 lm−21 · · · 0 0
lm−10 0 · · · 0 0



, (7)



where the matrices lij are

lij :=

m−1−j∑

k=i

(−1)kMk
ij ∂

k−i
x lm−1−j−k,

Mk
ij :=





k!
(k−i)!i! , i+ j ≤ m− 1 ∩ k ≥ i ≥ 0

0, i+ j > m− 1 ∪ k < i.

(8)

Extend the original matrix U to a square matrix U , which is made non-degenerate in a
neighborhood of the point p = p0 and the eigenvalue λ = λ0, to which the eigenvector u0

corresponds, by an appropriate choice of the auxiliary matrices Ã(λ,p) and B̃(λ,p)

U = [A,B] →֒ U :=

(
A B

Ã B̃

)
∈ C

2mN×2mN , Ũ := [Ã, B̃], det(U) 6= 0. (9)

For the adjoint boundary conditions Vv = [C,D]v = 0 the similar process yields

V := [C,D] →֒ V :=

(
C D

C̃ D̃

)
∈ C

2mN×2mN , Ṽ := [C̃, D̃], det(V) 6= 0. (10)

Then, the form in (5) can be represented as Ω(u,v) = (Vv)∗Ũu − (Ṽv)∗Uu.

3. Perturbation of eigenvalues

Assume that in the neighborhood of the point p = p0 the spectrum of the boundary
eigenvalue problem (1) is discrete. Denote L0=L(λ0,p0) and U0=U(λ0,p0). Consider a smooth
perturbation of parameters p = p(ε) where p(0) = p0 and ε is a small real number. Then,
as in the case of analytic matrix functions [12, 15], the Taylor decomposition of the differential
operator matrix L(λ,p(ε)) and the matrix of the boundary conditions U(λ,p(ε)) are [14, 16]

L (λ,p(ε)) =
∞∑

r,s=0

(λ− λ0)
r

r!
εs Lrs, U(λ, ε) =

∞∑

r,s=0

(λ− λ0)
r

r!
εsUrs, (11)

with L00 = L0, U00 = U0, and

Lr0 = ∂r
λL, Ur0 = ∂r

λU; Lr1 =

n∑

j=1

ṗj ∂
r
λ∂pj

L, Ur1 =

n∑

j=1

ṗj ∂
r
λ∂pj

U,

where dot denotes differentiation with respect to ε at ε = 0 and partial derivatives are evaluated
at p=p0, λ=λ0.

Let at the point p = p0 the spectrum contain a semi-simple µ-fold eigenvalue λ0 with µ

linearly-independent eigenvectors u0(x), u1(x), . . ., uµ−1(x). Then, the perturbed eigenvalue
λ(ε) and the eigenvector u(ε) are [7, 12, 14]

λ = λ0 + ελ1 + ε2λ2 + . . . , u = b0 + εb1 + ε2b2 + . . . . (12)

Substituting expansions (11) and (12) into (1) we find that the coefficients λ1 are generically
µ distinct roots of the µ-th order polynomial

det(F + λ1G) = 0. (13)



The entries of the µ× µ matrices F and G are defined by the expressions

Fij =< L01uj ,vi > + v
∗
i Ṽ

∗
0U01uj , Gij =< L10uj,vi > + v

∗
i Ṽ

∗
0 U10 uj . (14)

For µ = 1 the formulas (13) and (14) describe a simple eigenvalue

λ = λ0 − ε
< L01u0,v0 > + v∗0Ṽ

∗
0U01u0

< L10u0,v0 > + v∗0Ṽ
∗
0 U10 u0

+ o(ε). (15)

The formulas (13)–(15) extend the results of [7, 12, 14] to the case of the multiparameter non-
self-adjoint boundary eigenvalue problems for operator matrices.

Let at the point p = p0 the spectrum contain a non-derogatory µ-fold eigenvalue λ0 with
the Keldysh chain of length µ, consisting of the eigenvector u0(x) and the associated vectors
u1(x), . . .,uµ−1(x) that solve the boundary value problems

L0u0 = 0, U0u0 = 0, (16)

L0uj = −
j∑

r=1

1

r!
∂r

λLuj−r, U0uj = −
j∑

r=1

1

r!
∂r

λUuj−r. (17)

Substituting into equations (1) the Newton-Puiseux series for the perturbed eigenvalue λ(ε)
and eigenvector u(ε) [16]

λ = λ0 + λ1ε
1/µ + . . . , u = u0 + w1ε

1/µ + . . . , (18)

and collecting terms with the same powers of ε, yields the coefficient λ1 in (18). Hence,
generalizing the results of the works [14, 16], we find

λ = λ0 + µ

√√√√−ε < L01u0,v0 > + v∗0Ṽ
∗
0U01u0∑µ

r=1
1
r!(< Lr0uµ−r,v0 > + v∗0Ṽ

∗
0Ur0uµ−r)

+ o(ε
1

µ ), (19)

where v0 solves the adjoint boundary value problem L
†
0v0 = 0, V0v0 = 0.

4. Unfolding the doublets of definite Krein type in the Campbell diagrams

Consider a circular string of displacement W (ψ, τ), radius r, and mass per unit length ρ that
rotates with the speed γ and passes at ψ = 0 through a massless eyelet supported by the
spring with the stiffness K and damper with the damping coefficient D, Fig. 1(a). With the
non-dimensional parameters

t =
τ

r

√
P

ρ
, w =

W

r
, Ω = γr

√
ρ

P
, k =

Kr

P
, d =

D√
ρP

, ϕ =
ψ

2π
, (20)

and assuming w(ϕ, t) = u(ϕ) exp(λt) we arrive at the non-self-adjoint boundary eigenvalue
problem for a matrix (N = 2,m = 1) differential operator [9]

Lu := l0∂ϕu + l1u = 0, Uu := [A,B]u = 0, (21)

where

l0 =

(
1 0
0 1−Ω2

)
, l1 = −

(
0 1

4π2λ2 4πΩλ

)
,

A =

(
1 0

2π(k+λd)
Ω2−1

1

)
, B = −

(
1 0
0 1

)
. (22)



Parameters Ω, d, and k express the speed of rotation, damping, and stiffness.
For k = 0 and d = 0 the eigenvalues λ±n = in(1 ± Ω), n ∈ Z, form the spectral mesh of

the Campbell diagram [1, 19] in the plane (Ω, Imλ), Fig. 1(b). The lines λε
n = in(1 + εΩ) and

λδ
m = im(1 + δΩ), where ε, δ = ±1, intersect each other at the node (Ω0, ω0) with

Ω0 =
n−m

mδ − nε
, ω0 =

nm(δ − ε)

mδ − nε
, (23)

where the double eigenvalue λ0 = iω0 has two orthogonal eigenvectors

uε
n =

(
1

−iε2πn

)
e−iε2πnϕ, uδ

m =

(
1

−iδ2πm

)
e−iδ2πmϕ. (24)

Taking into account that δ = −ε at all the crossings, excluding (Ω0 = ±1, ω0 = 0) where
δ = ε, from (13) and (14) we find the real and imaginary parts of the perturbed non-zero double
eigenvalues

Reλ = −dn+m

8πnm
ω0 ±

√
|c|−Rec

2
, Imλ = ω0 + ε

n−m

2
∆Ω +

n+m

8πnm
k ±

√
|c|+Rec

2
, (25)

where ∆Ω = Ω − Ω0, and for the complex coefficient c we have

Imc = k
2dω0

16π2nm
+ dω0

m− n

4πnm

(
ε
n+m

2
∆Ω +

m− n

8πnm
k

)
,

Rec =

(
εn− δm

2
∆Ω +

m− n

8πnm
k

)2

+
k2

16π2nm
− [d(m+ n)ω0]

2

64π2n2m2
. (26)

Setting Rec = 0 and Imc = 0 we find the coordinates of the projections of the exceptional points
(where the perturbed eigenvalue is double and non-derogatory) of the surfaces Reλ(Ω, k) and
Imλ(Ω, k) onto the (Ω, k)-plane

ΩEP = Ω0 ±
ε

8πnm

d(m+ n)ω0√
nm

, κEP = ±d(n−m)ω0

2
√
nm

. (27)

The existence of the exceptional points (27) depends on the Krein signature [5, 6, 23] of the
intersecting branches of the unperturbed Campbell diagram, that is on the sign of the product
nm, where n,m ∈ Z − {0}. In the case of the rotating string all the crossings in the subcritical
speed range (|Ω| < 1) have definite Krein signature (nm > 0). For those in the supercritical
speed range (|Ω| > 1) it is mixed with nm < 0. In the (Ω, κ)-plane the exceptional points are
situated on the line Imc = 0.

Approximations (25) to the eigenvalue surfaces of a string with d = 0.3 are presented in Fig. 1.
The surface of the imaginary parts shown in Fig. 1(c) is formed by the two Whitney’s umbrellas
[3, 15, 20] with the handles (branch cuts) glued when they are oriented toward each other. This
singular surface is known in the physical literature on wave propagation in anisotropic media
as the double coffee filter [13, 17]. The viaduct singular surface of the real parts results from
the gluing of the roofs of two Whitney’s umbrellas when their handles are oriented outwards,
Fig. 1(d). The double coffee filter singularity is a result of the deformation of the MacKay’s
eigenvalue cone [6] by the dissipative perturbation. This perturbation foliates the plane Reλ = 0
into the viaduct singular surface which has self-intersections along the two branch cuts and an
ellipse-shaped arch between the two exceptional points, Fig. 1(d). Both types of singular surfaces
appear when non-Hermitian perturbation of Hermitian matrices is considered [17]. The smaller
inclusions in Fig. 1 show the cross-sections of the surfaces by the plane k = 0 for the convenience
of comparing with the corresponding numerical data of [9]. The results shown in Fig. 1 perfectly
agree with the numerical modeling of [9].





Figure 1. (a) A rotating circular string; (b) 30 modes of its spectral mesh; (c) the double coffee

filter singular surface Imλ(Ω, k) in the vicinity of the crossing with n = 1 and m = 2; (d) the
viaduct singular surface Reλ(Ω, k) corresponding to the crossing with n = 1 and m = 2.

5. Conclusion

A perturbative approach to multiparameter non-self-adjoint boundary eigenvalue problems for
operator matrices is developed in the form convenient for implementation in the computer
algebra systems for an automatic calculation of the adjoint boundary conditions and coefficients
in the perturbation series for simple and multiple eigenvalues and their eigenvectors. The
approach is aimed at the applications requiring frequent switches from one set of boundary
conditions to another. Applying it to the problem of the onset of instability in rotating continua
under symmetry-breaking perturbations, we found that in a weakly anisotropic rotor system the
branches of the Campbell diagram and the decay rate plots in the subcritical speed range are the
cross-sections of the two companion singular eigenvalue surfaces. The double coffee filter and the
viaduct are the imaginary and the real part of the unfolding of any double pure imaginary semi-
simple eigenvalue at the crossing of the Campbell diagram with the definite Krein signature.
The double coffee filter singularity and its viaduct companion are true symbols of instabilities
causing the wine glass to sing and the brake to squeal that connect these phenomena of the wave
propagation in rotating continua with the physics of non-Hermitian singularities associated with
the wave propagation in stationary anisotropic chiral media.
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