
CYBERNETICS AND PHYSICS, VOL. 2, NO. 1, 2013 , 25–30

EMERGENCE AND STABILITY OF AUTORESONANCE IN
NONLINEAR OSCILLATORS

Agnessa Kovaleva
Space Research Institute

Russian Academy of Sciences
Russia

a.kovaleva@ru.net

Leonid I. Manevitch
Institute of Chemical Physics

Russian Academy of Sciences
Russia

lmanev@chph.ras.ru

Abstract
Formation and control of autoresonance (AR) with

persistent growth of energy is based on the inherent
property of nonlinear systems to stay in resonance
when the driving frequency varies in time. However,
the mechanism of transitions from bounded oscillations
to AR is still an open question. As this paper demon-
strates, and in sharp contrast to previous investigations,
the emergence of AR from stable bounded oscillations
is basically analogous to the transition from small to
large oscillations in the time-invariant oscillator driven
by an external harmonic excitation with constant fre-
quency. It is shown that AR results from the loss of sta-
bility of the so-called limiting phase trajectory (LPT)
of small oscillations. A critical parameter, which de-
termines a boundary between small and large oscilla-
tions in the time-invariant system, may be considered
as a lower threshold of the autoresonance excitation
in the oscillator with slowly-varying parameters. The
values of bifurcation parameters accounting for small
sweeping rate and close to numerical results are ob-
tained from the condition of the capture into resonance.
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1 Introduction
Formation and control of the desired stable dynamics

of a nonlinear system is one of the most important ob-
jectives of control science. Typically, control may be
achieved by a feedback scheme. However, realization
of feedback in more complex systems requires care-
ful analysis of the uniqueness and stability of the in-
duced nonlinear state. This leads to the question of
whether one can avoid feedback, using a simple pro-
gramme control. In the AR applications, the answer to
this question is positive. The idea is to exploit the in-
herent feature of nonlinear systems to stay in resonance

when the driving frequency varies in time. This self-
phase-locking ability and continuous resonant growth
of energy due to slow variations of the excitation fre-
quency is usually referred to as the autoresonance phe-
nomenon.

After first studies for the purposes of particle accel-
eration [Veksler, 1944; McMillan, 1945], AR has be-
come a very active field of research. Theoretical ap-
proaches, experimental evidence and applications of
AR in different fields of natural science, from plas-
mas to planetary dynamics, are reported in numerous
papers listed in [Friedland, 2013]; additional theoreti-
cal and computational results can be found in [Chacón,
2005; Ben-David, 2006; Kalyakin, 2008; Witkov,
2010; Blekhman, 2012]; recent advances in this field
are discussed, e.g., in [Andersen, 2011; Murch, 2011;
Perkin, 2012; Shalibo, 2012; Friedland, 2013].
It was noticed in the early theory of cyclotron [Bohm,

1947] that a physical mechanism behind autoresonance
is adiabatic nonlinear phase-locking between the sys-
tem and the driving signal. But it remains unclear un-
der what conditions the transition from bounded oscil-
lations to AR may occur. The results presented in this
work indicate that the emergence of AR is similar to the
transition from small (quasi-linear) to large (nonlinear)
oscillations in the system with constant parameters and
constant excitation frequency [Manevitch, 2011]. We
demonstrate that AR occurs due to the loss of stabil-
ity of the so-called limiting phase trajectory (LPT) of
small oscillations. In addition, we derive a relationship
between the parameters, which can be interpreted as a
lower excitation level capable of producing AR.
The paper is organized as follows. In Sec. II, we in-

troduce the slowly time-dependent Duffing oscillator as
a benchmark model. In contrast to previous studies, a
system with time-dependent linear stiffness is consid-
ered. Then we briefly recall main terms and definitions
concerning the LPTs in the system with constant pa-
rameters and constant driving frequency. Section III
demonstrates numerical results, which confirm the sim-
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ilarity of the occurrence of autoresonance in the slowly
time-dependent Duffing model to the transitions from
small (quasi-linear) to large (nonlinear) oscillations in
the system with constant parameters and constant ex-
citation frequency. It is shown that a critical parame-
ter, which determines a boundary between small and
large oscillations in the time-invariant system, may be
treated as a lower threshold of autoresonance in the os-
cillator with slowly-varying parameters. Furthermore,
a bifurcation parameter, numerically obtained in [Gros-
feld, 2002; Marcus, 2004; Friedland, 2008] is inaccept-
able in the problem examined in this paper. Stability of
autoresonance is studied in Sec. IV.
It is important to note that the Duffing system is cho-

sen for illustrative purposes and qualitative features of
the results hold true for oscillators with different non-
linearities.

2 Model

The equation of motion of the time-dependent Duffing
oscillators is given by

d2u

dt2
+(1−εζ(t, ε))u+8εαu3 = 2εF cos θ(t, ε) (1)

where ζ(t, ε) = s1 + εβ1t, θ(t, ε) = 1 + εs2t +
ε2β2t

2/2, ε > 0 is a small parameter of the system.
The initial conditions u = 0, v = du/dt at t = 0 deter-
mine the so-called limiting phase trajectory (LPT) cor-
responding to the maximum possible energy transfer
from the source of energy to the oscillator [Manevitch,
2011].
Asymptotic solutions of Eq. (1) for small ε are con-

structed with the help of the multiple scale method
[Kevorkian, 1996]. To this end, we introduce a pair
of the complex-conjugate variables φ and φ∗

φ = (v + iu)e−it, φ∗ = (v − iu)eit. (2)

As in previous works, [Manevitch, 2011, 2013; Koval-
eva, 2012], the function φ is constructed in the form of
the asymptotic series

φ(t, τ1) = φ0(τ1) + εφ1(t, τ1) + ..., τ1 = εt,

with the slow term φ0(τ1) satisfying the equation

dφ0

dτ1
+ i[(s1 + β1τ1)− 3α|φ2

0|]φ0 = (3)

= −iFeiτ1(s2+β2τ1/2), φ0(0) = 0.

Let s = s1 + s2, β = β1 + β2. We first assume
that s > 0, α > 0. The change of variable φ0(τ1) =
λψeiτ1(s2+β2τ1/2) and the rescaling

τ = sτ1, λ =
s1/2

(3α)1/2
, f =

F

sλ
=

3α1/2

s3/2
F (4)

Figure 1. Phase portraits and envelopes a(τ) for systems with
weak (a), moderate (b), and strong (c) nonlinearity.

transform Eq. (3) into the following two-parameter
equation for the slowly-varying envelope ψ :

dψ

dτ
+ i(1 + βτ − |ψ|2)ψ = −if, ψ(0) = 0. (5)

In the next step, the polar representation ψ = aei∆

transforms Eq. (5) into the real-valued system

da

dτ
= −f sin∆, (6)

d∆

dτ
= −(1 + βτ)− a−1f cos∆

with initial conditions a(0) = 0,∆(0) = −π/2 that
correspond to the LPT of system (6). From Fig. 1, it
is seen that this trajectory represents an outer boundary
for a set of trajectories encircling the stationary points
of system (6).
System (6) represents a nonlinear analog of the

Landau-Zener (LZ) equations of quantum tunnelling
[Zobay, 2000; Liu, 2002; Kovaleva, 2011; Manevitch,
2011, 2013]. A direct analysis shows that Eqs. (6) may
have both bounded and unbounded solutions (Fig. 2).
If s < 0, α < 0, then the rescaling

τ = |s|τ1, λ =
|s|1/2

|3α|1/2
, f =

F

sλ
=

3|α|1/2

|s|3/2
F (7)
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converts Eq. (3) into the complex-valued equation

dψ

dτ
− i(1 + βτ − |ψ|2)ψ = −if, ψ(0) = 0. (8)

The representation ψ = ae−i∆ converts Eq. (8) to the
real-valued system similar to (6), with the change ∆
to −∆. In what follows we study in detail the case
s > 0, α > 0.
In order to clarify the initiation of the unbounded

modes from the LPT, we first consider a time-invariant
analog of system (6), in which β = 0.
It was earlier shown [Manevitch, 2011] that there exist

two critical values f1 and f2, which define the bound-
aries between different types of the dynamical behav-
ior. If f < f1 or f1 < f < f2, then there exists a stable
centre on each of the axes ∆ = −π and ∆ = 0, and
an intermediate unstable hyperbolic point on the axis
∆ = −π (Figs. 1a, 1b); if f ≥ f2, then there exists
only the stable centre on the axis ∆ = 0 (Fig. 1c). The
conditions f < f1, f1 < f < f2, and f > f2 charac-
terize quasi-linear, moderately nonlinear, and strongly
nonlinear systems, respectively.
A boundary between small and large oscillations cor-

responds to

f1 =

√
2

27
≈ 0.2721. (9)

It was demonstrated [Manevitch, 2011] that at f = f1
the LPT of small oscillations coalesces with the sepa-
ratrix going through the homoclinic point on the axis
∆ = −π. This implies that the transition from small to
large oscillations occurs through the loss of stability of
the LPT of small oscillations. At f = f2, where

f1 =
2√
27

≈ 0.3849, (10)

the stable center on the axis ∆ = −π vanishes through
the coalescence with the homoclinic point, and only a
single stable center remains on the axis ∆ = 0 (Fig.
1c). Figure 1 clearly demonstrates the “limiting” prop-
erty of the LPTs in the time-invariant system. It is
seen that the LPT represents an outer boundary for a
set of closed trajectories encircling the stable center in
the phase plane (∆, a).

3 Numerical Results
In this section, we present the numerical results that

help understand the dynamics of system (6) with non-
zero sweeping rate. The system with α > 0 (hard
nonlinearity), s > 0 and 0 < |β| << 1 is consid-
ered. Two possibilities are discussed: (i) periodic os-
cillations shown in Fig. 1 are transformed into bounded

Figure 2. Plots of a(τ) and phase portraits of system (6) with f =
0.2799 and β = ±0.001(top row); f = 0.3412 and β =
±0.01 (bottom row). Plots of the LPTs corresponding to β = 0
are shown for comparison.

oscillations with amplitude a(τ) approaching to a con-
stant value a0 as τ → ∞ (Fig. 2); (ii) periodic oscil-
lations are transformed into growing (autoresonance)
oscillations (Fig. 3).
Figure 2 demonstrates the results of numerical simula-

tions in the case of f > f1, for which the conservative
system (β = 0) exhibits large oscillations. It is obvi-
ous that, if β > 0, the instant detuning 1+βτ increases
with time, thereby biasing the system into the domain
of small oscillations, while the negative rate β < 0
decreases detuning and thus biases the system into the
domain of large oscillations. This effect is clearly seen
in Fig. 2.
The phase portraits (right column) show that in the

first half-cycle of oscillations the shape of the bottom
(red) orbit (β > 0) is similar to the LPT of small oscil-
lations (Fig. 1a), whereas the top (blue) orbit (β < 0)
becomes close to the LPT of large oscillations (Fig. 1b)
of the time-invariant analogue of system (6) (β = 0).
The projection of the trajectory a(τ) onto the phase
plane (a, v) represents the spiral orbit with an attracting
focus a = a0, v = 0, where a0 =lima(τ) as τ → ∞.
The analysis of bounded oscillations as well as the cal-
culation of the limiting value a0 is suggested in [Koval-
eva, 2012; Manevitch, 2011, 2013].
Figure 3 depicts the occurrence of AR from stable

bounded oscillations under changes of the parameter
f . It is seen that the shape of the first half-cycle of
small oscillations corresponding to β > 0 is consis-
tent with the LPT of quasi-linear periodic oscillations
(Fig. 1a), while the first half-cycle of autoresonance
is similar to the half-cycle of the LPT in the system
with moderate nonlinearity (Fig. 1b); then the shape
of oscillations takes the saw-tooth form typical for the
system with strong nonlinearity (Fig. 1c). This means
that the transition from bounded to unbounded oscilla-
tions in the system with slow positive sweep occurs in
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Figure 3. Transition from bounded oscillations to AR.

the same way as the transition from small to large os-
cillations in the system with constant parameters, that
is, due to destruction of the LPT of small quasi-linear
oscillations.
If the parameter f is close to the critical value f1, then

the transition from bounded oscillations to AR takes
place under very slow sweep. For instance, 0.006 <
β < 0.007 at f ≈ 0.28 (Fig. 3a); in this case, the
difference between f and f1 is less than 2.8%. On the
other hand, for f = 0.34, the critical rate 0.061 < β <
0.062 (Fig. 3b) ; the difference between f and f1 is
about 20%. This implies that the inequality

f > f1 (11)

can be interpreted as the necessary condition of the AR
excitation.
The transformations Ψ = |β|−1/4ψ, τ̃ = |β|1/2(τ +
1/β), µ = |β|−3/4f reduces Eq. (5) to the form

dΨ

dτ̃
+ i(τ̃ − |Ψ|2)Ψ = −iµ, Ψ(τ̃0) = 0, (12)

with the zero initial condition at τ̃0 = |β−1/2|signβ. It
was found numerically [Grosfeld, 2002; Marcus, 2004;
Friedland, 2008] that in this system autoresonance oc-
curs if µ > µth = 0.41. At earlier work [Grosfeld,
2002; Marcus, 2004] the threshold µth = 0.41 was
treated as independent of τ̃0 but a more thorough study
[Friedland, 2008] demonstrated that for τ̃0 > 0 or,
by definition, β > 0, the threshold µth grows signif-
icantly when τ̃0 increases, or |β| decreases. Thus, even
if we omit a discussion of applicability of a numerically
found threshold for a large class of physical problems,
we should underline that the threshold µth = 0.41 is
unusable in the problem under consideration wherein
the effect of small values of β > 0 is examined.

4 Stability of Autoresonance in the Adiabatic Sys-
tem

In the literature (e.g., [Fajans, 2001]), the analysis
of AR is built on the assumption of small phase de-
viations from the stationary state of the system with
“frozen” detuning. However, from Fig. 4d it is seen
that, although in the phase-locking regime the phase

Figure 4. Plots of a(τ) and ∆(τ) in tunneling (f = 0.445,
β = 0.03) and autoresonance (f = 0.446, β = 0.03).

converges to ∆ = 0 as τ → ∞, in the large initial in-
terval it oscillates about ∆ = 0 with bounded but not
small amplitude |∆| < π. Motivated by the numerical
results, this paper does not invoke assumptions of small
phase deviations from quasi-stationary states.
We explore the phase-locking regime with the help

of the standard procedure of the resonance analysis
[Arnold, 2006]. For this purpose, we introduce the pa-
rameters µ = ε1/2, tk = µkτ, β = µ2γ, f = µ2Φ and
then rewrite system (6) as

da

dt1
= −µΦsin∆, (13)

µ
d∆

dt1
= −(1 + γt2) + a2 − a−1µ2Φsin∆.

If the system is captured in the neighborhood of the
resonance manifold, then one can set

−(1 + γt2) + a2 = µp. (14)

Considering p as a new variable and ignoring higher-
order terms, we obtain the system

d∆

dt1
=
∂H

∂p
= p, (15)

dp

dt1
= −∂H

∂∆
= −[γ + 2(1 + γt2)

1/2Φsin∆],

generated by the Hamiltonian H = 1
2p

2 + U(∆, t2),
where

U(∆, t2) = γ∆− 2(1 + γt2)
1/2Φcos∆. (16)

The function H can be interpreted as energy of the
pendulum with tilt angle ∆ and velocity p; U expresses
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the potential energy of the pendulum; γ > 0 plays the
role of a constant moment, which tilts the potential well
and changes the equilibrium position of the pendulum;
the coefficient γt2 expresses the change of the pendu-
lum length.
Phase locking persists if the system remains captured

into the time-dependent well of the potential U(∆, t2)
for any t2, that is:
(i) the parameter γ is small enough to ensure the well-

shaped potential with a distinctive minimum;
(ii) initial energy is small enough to avoid the escape

from the well.
While the first condition (i) was discussed earlier [Fa-

jans, 2001, Marcus, 2004], the second condition (ii)
was not taken into consideration. Here, both conditions
are discussed.
In order to give a formal description of condition (i),

we use the arguments similar to that ones from [Mar-
cus, 2004] but omit the assumptions of small deviations
from quasi-stationary states. It follows from (15) that
the term γt2 enlarges the depth of the potential well at
each time instant t2. This means that the well-shaped
potential at t2 = 0 ensures the well-shaped potential
for any t2 > 0. The generating conservative potential
is written as

U(∆) = γ∆− 2Φ cos∆. (17)

Potential (16) has a minimum if the equation

∂U0

∂∆
= γ + 2Φ sin∆ = 0 (18)

is solvable. The condition of solvability holds only if
γ ≤ 2Φ, or, in the previous notations,

β ≤ 2f. (19)

A similar condition was derived in [Fajans, 2001]. It
is important to note that inequality (18) always holds
for sufficiently small rates β.
We now formulate condition (ii). To this end, we con-

sider a conservative analog of system (12)

d∆

dt1
=
∂H0

∂p
= p, (20)

dp

dt1
= −∂H0

∂∆
= −(γ + 2Φ sin∆),

where H0(∆, p) =
1
2p

2 + U0(∆). It follows from (13)
that the initial conditions for system (18) are defined as
µp = −1,∆ = −π/2.
Let the potential U0 attain its minimum and maxi-

mum at ∆ = d1 and ∆ = d2, respectively. It follows
from (17) that the neighboring to ∆ = −π/2 points
d1,2 are defined as d1 = −d, d2 = −π + d, where

d = − arcsin(β/2f). Hence, the minimum and the
maximum of U0 are given by

U0(d1) = −γd− 2Φ cos d, (21)
U0(d2) = γ(π − d) + 2Φ cos d.

Since ∆ = d2 corresponds to the potential barrier,
then the maximum admissible energy Hbar at which
the system remains trapped into the well corresponds
to the attainment of the barrier with velocity p = 0;
this yields Hbar = U0(d2). This implies that the con-
servative system (19) stays trapped into the well if the
initial energy does not exceed U0(d2), that is,

[1/(2µ2) + U0(−π/2)] ≤ U0(d2).

If we recall that β = µ2γ, f = µ2Φ, we get

1 ≤ −β(π − d) + 4f cos d. (22)

If |β/2f | << 1, then inequality (21) is reduced to the
simpler form

β < βcr = (4f − 1)/π. (23)

We now compare conditions (18) and (22). It is impor-
tant to note that inequality (18) always holds for suffi-
ciently small β and, in general, roughly estimates ad-
missible values of the rate β. Indeed, it follows from
Fig. 3 that for f = 0.28 autoresonance occurs at
β = 0.006, while condition (18) gives β < 0.56. At
the same time, from (22) we find that β ≤ βcr = 0.015
if f = 0.28. Although βcr is still greater than the com-
putational result β = 0.006, it significantly improves
an admissible interval compared to condition (18).

5 Conclusions
In this paper the origin and stability of autoresonance

were examined using the concept of limiting phase tra-
jectories (LPT). It was shown that, in contrast to pre-
vious investigations, the emergence of AR from stable
bounded oscillations is similar to the transition from
small to large oscillations in the time-invariant oscilla-
tor driven by an external harmonic excitation with con-
stant frequency. It is demonstrated that AR results from
the loss of stability of the so-called limiting phase tra-
jectory separating the domains of small and large oscil-
lations. In addition, it has been shown that AR stability
is closely connected with the permanent capture into
resonance in the system with slowly-varying parame-
ters. Note that the considered model of the Duffing os-
cillator was chosen only for illustrative purposes. The
obtained results can be extended to more general cases
of the arrays of nonlinear oscillators.
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