
PERFORMANCE ANALYSIS OF HARMONICALLY
FORCED NONLINEAR SYSTEMS

A.Yu. Pogromsky ∗ R.A. van den Berg ∗ J.E. Rooda ∗

∗Department of Mechanical Engineering, Eindhoven University
of Technology, P.O. Box 513, 5600 MB, Eindhoven, The

Netherlands
{A.Pogromsky, R.a.v.d.Berg, J.E.Rooda}@tue.nl

Abstract: The paper deals with the performance analysis of harmonically forced
nonlinear systems of Lur’e type.

Keywords: harmonic linearization, describing functions, periodic solutions, direct
Lyapunov method

1. INTRODUCTION

It is well known that any solution of a stable linear
time-invariant (LTI) system with a harmonic in-
put converges to a unique harmonic limit solution
that depends only on the input and not on the
initial conditions. Nonlinear systems with such a
property are referred to as convergent systems.
Solutions of the convergent systems “forget” their
initial conditions and after some transient time
depend on the system input that can be a com-
mand or reference signal. For LTI systems such
a harmonic limit solution can be easily derived
while a similar problem for nonlinear systems is
hard to tackle. Some recent results in this field
can be found, e.g. in (Jönsson, et. al., 2003).

In this paper we consider the harmonic lineariza-
tion (Rozenwasser, 1969; Khalil, 2002) of nonlin-
ear systems of Lur’e type. We formulate a fre-
quency domain condition which ensures that the

harmonic linearization is well-posed and derive
upper bounds for its approximation error. We say
that the procedure of harmonic linearization is
well-posed if for a given amplitude and frequency
of the excitation signal, the corresponding alge-
braic harmonic balance equation has a unique
solution for a class of nonlinearities described by
incremental sector condition. It turns out that this
problem can be tackled with the frequency in-
equality of the incremental circle criterion verified
for the frequency of the external excitation.

2. HARMONIC LINEARIZATION OF LUR’E
SYSTEMS

Consider the following system of differential equa-
tions {

ẋ = Ax−Bφ(y) + Fu

y = Cx + Du
(1)



where x ∈ Rn is the state, u ∈ R is the input,
y ∈ R is the output, φ is a continuous scalar
function and the matrices A, B,C, D, F are of
corresponding dimensions. We will assume that
the nonlinear function φ satisfies the following
incremental sector condition

0 ≤ φ(y1)− φ(y2)
y1 − y2

≤ µ (2)

for some positive µ. We do not consider the a
special case µ = +∞ here, but focus only on
finite µ. A more general result that includes also
µ = +∞ can be derived from our results using the
standard methods of absolute stability theory.

Suppose u(t) is a periodic function of time with
period T and system (1) has a unique T -periodic
solution x̄(t).

Let us approximate nonlinear system (1) by a
linear system{

ξ̇ = Aξ −BKζ + Fu

ζ = Cξ + Du
(3)

If the matrix A−BKC does not have eigenvalues
on the imaginary axis then for the periodic input
u(t) the system has a unique periodic solution
ξ̄(t). Let us choose the gain K to minimize the
following criterion

J :=
1
T

∫ T

0

[φ(ζ̄(t))−Kζ̄(t)]2dt,

where ζ̄(t) = Cξ̄(t) + Du(t). This optimal gain
can be derived from the condition

dJ

dK
= 0

and is given by

K∗ =

(∫ T

0

ζ̄2(t)dt

)−1 ∫ T

0

φ(ζ̄(t))ζ̄(t)dt.

Now, suppose the input u(t) is a harmonic func-
tion of period T = 2π/ω

u(t) = b sin ωt, (4)

so the output ζ̄ is given by

ζ̄(t) = a sin(ωt + ψ), a > 0 (5)

with some ψ.

In this case the optimal gain is given as a function
of the amplitude a of the output ζ̄(t):

K(a) =
1

1πa

∫ 2π

0

φ(a sin θ) sin θdθ.

If φ is an odd function, K(a) is its describing
function. Examples of calculations of K(a) for
various φ can be found in many textbooks on the
describing function method. From now on we as-
sume that φ is an odd function and, consequently,

K(a) =
2
πa

∫ π

0

φ(a sin θ) sin θdθ.

Consider system (3). Let s = d
dt . Then one can

write

ζ̄(t) =−C(sIn −A)−1BK(a)ζ̄

+(C(sIn −A)−1F + D)u(t).

Since the amplitude of ζ̄(t) is a, the following
relation is valid if A does not have pure imaginary
eigenvalues ±iω

|1 + K(a)G(iω)|2a2 = |C(iωIn −A)−1F + D|2b2

(6)
where G(iω) = C(iωIn−A)−1B. The equation (6)
is referred to as the harmonic balance equation.
For this equation one can pose the following
problem: given b > 0, ω > 0, does equation (6)
have a unique positive real solution a(b, ω)? If
so, then substituting K(a(b, ω)) in (3) instead of
K one can easily compute the solution ξ̄(t) and
then to consider the question of how accurate the
solution ξ̄(t) approximates the solution x̄(t).

Before we study equation (6) let us characterize
the function K(a). If the nonlinear function φ

satisfies either the sector or the incremental sector
condition, it is possible to characterize the func-
tion K(a) as given by the following results.

Lemma 1. Assume that for all y ∈ R, y 6= 0 there
is a µ > 0 such that

0 ≤ φ(y)
y

≤ µ

Then
0 ≤ K(a) ≤ µ, ∀a ≥ 0.

Proof: See (Khalil, 2002), page 285. ¤

By analogy,

Lemma 2. Assume that for all y1, y2 ∈ R, y1 6= y2

there is a µ > 0 such that



0 ≤ φ(y1)− φ(y2)
y1 − y2

≤ µ

Then

0 ≤ K(a1)a1 −K(a2)a2

a1 − a2
≤ µ, ∀a1, a2 ≥ 0, a1 6= a2.

(7)

Proof: Denote

LK :=
K(a1)a1 −K(a2)a2

a1 − a2

Then

LK =
1

a1 − a2

(
2
π

∫ π

0

φ(a1 sin θ) sin θdθ

− 2
π

∫ π

0

φ(a2 sin θ) sin θdθ

)

=
2
π

∫ π

0

(φ(a1 sin θ)− φ(a2 sin θ)) sin2 θdθ

a1 sin θ − a2 sin θ

≤ 2µ

π

∫ π

0

sin2 θdθ = µ

The left inequality is proven in the same way. ¤

Now consider again equation (6). The following
result is valid.

Theorem 3. Suppose the matrix A does not have
pure imaginary eigenvalues ±iω and the following
frequency inequality

Re G(iω) > − 1
µ

(8)

is fulfilled. Then for any function K(a) satisfying
(7) and for any b > 0 there is a unique positive
real solution a(b, ω) of equation (6).

Conversely, if

Re G(iω) < − 1
µ

,

then there is a function K(a) satisfying (7) such
that equation (6) has multiple distinct positive
real solutions a for some b > 0.

Proof: Consider the left hand side of equation (6)

π(a) = |a + K(a)aG(iω)|2

The idea of the proof is to show that if the
frequency inequality (8) holds then π(a) is a
strictly increasing function. The sector condition
(7) implies that π(a) is a (Lipschitz) continuous

function. Since π(0) = 0 and π(∞) = ∞, existence
and uniqueness of the positive real solution a(b, ω)
of (6) follow.

For the sake of simplicity, we will prove the the-
orem under assumption that K(a)a is a differen-
tiable function of a. The general case can be de-
duced from (7) after some ε-δ work, for example,
taking into account that

0≤ lim inf
a1→a2

K(a1)a1 −K(a2)a2

a1 − a2

≤ lim sup
a1→a2

K(a1)a1 −K(a2)a2

a1 − a2
≤ µ.

Differentiating π(a) with respect to a yields

π(a)′

a
= (1 + (Ka)′G)(1 + KG∗)

+(1 + KG)(1 + (Ka)′G∗)

≥ 2 (1 + (K + (Ka)′)ReG

+K(Ka)′[Re(G)]2
)

(9)

Taking into account (7), it follows that 0 ≤
K(a) ≤ µ and 0 ≤ (K(a)a)′ ≤ µ. Together with
(8) it implies that the quadratic expression (9) is
positive.

To prove the second part of the theorem, notice
that

π(a)′

a
= 2Re [(1 + (Ka)′G)(1 + KG∗)]

and therefore if we choose the function K(a) and a
point a0 such that (K(a0)a0)′ is sufficiently close
to µ, while K(a0) is sufficiently close to zero (or a
way around), the derivative of π becomes strictly
negative for such a K(a0). However, π(0) = 0 and
π(∞) = ∞, therefore, one can choose b ≥ 0 so
that equation (6) has multiple distinct positive
real solutions. ¤

It is worth noting that the frequency inequality
from the theorem hypothesis is the same inequal-
ity imposed by the incremental circle criterion
yet verified only for the frequency of the external
excitation.

The previous results allow one to complete the
procedure of harmonic linearization for system
(1). Indeed, if the frequency condition holds, there
is a unique positive real solution a(b, ω), given



b, ω. Then substituting K(a(b, ω)) in (3) gives a
system linear in ξ. For such a system one can
calculate the unique periodic solution ξ̄(t) using
only algebraic calculations. Like in the standard
describing function method, one can expect that
ξ̄(t) is sufficiently close to x̄(t). In the next section
we derive a bound that estimates this difference
in L2-norm.

3. ACCURACY OF HARMONIC
LINEARIZATION

In this section we study how accurate the pro-
cedure of harmonic linearization is. As before, to
formulate the problem statement, we assume that
for a given harmonic input u(t) = b sin ωt the
system (1) has a unique 2π/ω-periodic solution
x̄(t). Together with system (1) consider the output

z̄(t) = Hx̄(t), z ∈ R (10)

with an appropriate matrix H. We further assume
that the frequency inequality (8) holds and thus,
according to the results of the previous section
there is a unique positive real solution a(b, ω) of
the harmonic balance equation (6). The problem
addressed here is to find an upper bound for

(
ω

2π

∫ 2π/ω

0

[z̄(t)− η̄(t)]2 dt

) 1
2

with
η̄(t) = Hξ̄(t). (11)

Let e be the difference x̄− ξ̄. Then

ė = Ae−B
[
φ(ȳ)− φ(ζ̄)

]
+ B∆(t)

ȳ = Cx̄ + Du (12)

ζ̄ = Cξ̄ + Du

where

∆(t) = K(a(b, ω))ζ̄(t)− φ(ζ̄(t))

Substituting (5) in the previous expression gives

∆(t) = K(a(b, ω))a sin(ωt + ψ)− φ(a sin(ωt + ψ))

Let

v(a) =
(

1
2π

∫ 2π

0

[
2
π

∫ π

0

φ(a sin θ) sin θdθ · sin ϑ

−φ(a sin ϑ)]2 dϑ
) 1

2
.

This integral can be calculated using the same
technique as in calculation of K(a). Notice that

v(a(b, ω)) =

(
ω

2π

∫ 2π/ω

0

∆2(t)dt

) 1
2

where a(b, ω) is the solution of (6).

If one makes a technical assumption that the pair
(A,B) is controllable and (A,C) is observable and
A does not have pure imaginary eigenvalues then
the fulfillment of the frequency condition (8) for
all ω ∈ R implies that for any ε > 0 there is a
symmetric matrix P = P> such that

e>P
(
Ae−B

[
φ(ȳ)− φ(ζ̄)

]) ≤ −εe>e

Taking the derivative of the quadratic form

V =
e>Pe

2
along the solutions of (12) yields

V̇ ≤ −εe>e + e>PB∆(t)

Completing the squares with an appropriate ε one
can write

V̇ ≤ −(z̄ − η̄)2 + γ2∆2(t)

with some finite γ > 0. Integrating the last
inequality from 0 to 2π/ω and using periodicity
of V (e(t)) one gets

(
ω

2π

∫ 2π/ω

0

[z̄(t)− η̄(t)]2 dt

) 1
2

≤ γv(a(b, ω)).

(13)

To find the best possible (smallest) γ one can pose
and numerically solve the following optimization
problem:

Problem 4. Minimize γ such that

i) P is symmetric

ii)



A>P + PA + H>H −PB +
µ

2
C> PB

−B>P +
µ

2
C −1 0

B>P 0 −γ2


 ≤ 0

Now we can summarize the above arguments in
the following result.

Theorem 5. Consider system (1, 2, 4) under the
following assumptions



• (A,B) is controllable and (A,C) is observ-
able.

• matrix A does not have eigenvalues on the
imaginary axis.

• the frequency inequality (8) is satisfied for all
ω ∈ R.

Along with system (1, 2, 4) consider its approx-
imation (3, 4) with K = K(a(b, ω)) and a(b, ω)
being the unique positive real solution of the har-
monic balance equation (6). Let γ be the solu-
tion to Problem 4. Then there is a unique 2π/ω-
periodic solution x̄(t) of (1,4) and the estimate
(13) holds for z̄ and η̄ defined in (10), (11).

To complete the proof one has to show that
there is a unique 2π/ω-periodic solution. That
follows from the frequency domain inequality via
contraction mapping argument.

The previous result requires fulfillment of the in-
cremental circle criterion (frequency domain in-
equality) which is a sufficient condition that for
a given b > 0 and ω > 0 the corresponding
coefficient of harmonic linearization is uniquely
determined. The frequency domain inequality is
also a necessary condition in the sense of Theorem
3: it ensures solvability of the algebraic harmonic
balance equation for the class of functions K(·)
satisfying condition (7). However it is possible
that for a given nonlinearity φ the corresponding
harmonic balance equation has a unique posi-
tive real solution a(b, ω) while the frequency do-
main inequality does not hold. In this case it
is still possible to estimate the accuracy of the
method of harmonic linearization. We hope that
an LMI-based procedure of checking frequency-
domain inequality for a (semi)-finite range of fre-
quencies can be derived with a recent generaliza-
tion of Kalman-Yakubovich-Popov lemma due to
A. Fradkov (Fradkov, 2006).

It is important to note that the procedure given
by Theorem 5 is numerically efficient. Once the
incremental gain γ is found by solving Problem 4,
the limit solution of the linear approximation and
the upper bound on the error of this solution (13)

can be easily computed for various pairs of (b,ω)
from a certain domain of interest.

The previous theorem can be further generalized
if one takes into account that ∆ is a T -periodic
signal and its Fourier transform does not contain
the first harmonic.

Denote

ρ1 := sup
k=3,5,...

|C(ikωIn −A +
µ

2
BC)−1B|

ρ2 := sup
k=3,5,...

|H(ikωIn −A +
µ

2
BC)−1B|

Theorem 6. Consider system (1, 2, 4) under the
following assumptions

• (A,B) is controllable and (A,C) is observ-
able.

• the harmonic balance equation has a unique
positive real solution a(b, ω)

• ρ1µ < 2
• φ is an odd function

Along with system (1, 2, 4) consider its approx-
imation (3, 4) with K = K(a(b, ω)) and a(b, ω)
being the unique positive real solution of the har-
monic balance equation (6). Let γ be defined as

γ =
2ρ2

2− µρ1

Then there is a unique 2π/ω-periodic solution x̄(t)
of (1,4) and the estimate (13) holds for z̄ and η̄

defined in (10), (11).

4. ILLUSTRATIVE EXAMPLE

Consider system (1) with

A =

[
0 0

−Ki −KiKa

]
, B =

[
−1

Kp −KiKa

]
,

C = [0 1], F =

[
0
f

]

with positive Ki, Kp, f and nonnegative Ka and
saturation nonlinearity

φ(y) = sign(y)min{1, y}
This system corresponds to a PI-controlled inte-
grator with saturation and anti-windup (if Ka >



0). The describing function of the saturation non-
linearity is given by

K(a) =





1, a ≤ 1
2
π

(
sin−1

(
1
a

)
+

1
a

√
1− 1

a2

)
, a > 1

The square root of the left hand side of the har-
monic balance equation

√
π(a) as a function of a

is depicted in Fig. 1 with Ki = 20,Kp = 10,Ka =
0, ω = 1 (no anti-windup). The shape of this curve
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Fig. 1. The square root of the left hand side of the
harmonic balance equation

√
π(a) versus a,

Ka = 0.

suggests that for relatively small b the system has
one periodic solution and then, with increase of
b the system has three periodic solutions, and
then, again if b further increases, the system again
has only one periodic solution. This quantitative
conclusion is supported by numerical simulation.

It can be proved (van den Berg et. al., 2006) that
if KaKp > 1 (with anti-windup) then the system
has exponentially stable (yet not quadratically)
periodic solution for arbitrary b, ω. This can be
illustrated with Fig. 2 - the function π(a) be-
comes monotonically increasing for Ka = 1/Kp =
0.1, ω = 0.4.
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