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Abstract
In this paper we show how to compute bounds for a

compact domain which contains all compact invariant
sets of one sixdimensional system describing plasma
dynamics. Using the first order extremum conditions
we obtain formulas for the localization bounds by us-
ing several quadratic and rational localizing functions.
In addition, by exploiting some rational functions we
demonstrate how to refine this localization with help of
a removal of some pieces from the localization domain.
Conditions of global stability are presented. Results
of numerical simulation illustrating the localization do-
main for the chaotic attractor are provided.
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1 Introduction
In this work we compute a localization domain con-

taining all compact invariant sets for one six- di-
mensional system of polynomial differential equations
which describes dynamics of low frequency, long
wave-length electromagnetic fields in a non- uniform
magnetised plasma:

ẋ1 = −σ1x1 + σ1x2 + δx2x3 (1)
ẋ2 = −x1x3 + γ1x1 − x2
ẋ3 = x1x2 − β1x3
ẋ4 = −σ2x4 + σ2x5 + δ1x5x6 + δ2x5x3

ẋ5 = −x4x6 + γ2x4 − γ3x5 + δ4x3x4

ẋ6 = x4x5 − β2x6.

This system was derived in the paper [Banerjee,Saha
and Chowdhury, 2001] from some couple of partial
differential equations presented in [Shukla,Birk,Dreher
and Stenflo, 1996].

The problem of finding a localization set is of interest
both in theoretical studies and for practical needs. Rea-
sons for this are as follows. Equations of plasma dy-
namics may exhibit chaotical behaviour for some val-
ues of parameters, see [Banerjee,Saha and Chowdhury,
2001], which leads to a necessity of studies its long-
time dynamics. Further, finding a localization set K
is important for narrowing the simulation experiment
of dynamics of (1) onto K in case of systems with a
complex behaviour and/or of high dimensions. Both
of these features we meet in case of the system (1).
The physical significance of compact invariant sets of

any differentiable right-side system is related to the fact
that they may carry information about a long- time be-
havior of the system, both in the negative and the posi-
tive time. Any globally bounded motion of the system
is contained in one of compact invariant sets. Further,
the existence or the nonexistence of periodic orbits ex-
presses the fact of the presence or the lack correspond-
ingly of repeatable behavior.
The localization problem of compact invariant sets

containing in a given domain has been studied inten-
sively for nonlinear multidimensional continuous-time
systems during last years, see papers [Krishchenko
and Starkov, 2006], [Krishchenko and Starkov, 2007],
[Starkov, 2009], [Starkov, 2009] and others. The key
idea of the approach described in these papers consists
in using the first order extremum conditions.
The physical sense of parameters of this system is

given in paper [Banerjee,Saha and Chowdhury, 2001];
according with this all parameters of the system (1) are
assumed to be positive throughout this paper. We point
out that studies of a location of all compact invariant
sets of some systems of plasma dynamics have been
already realized in case of the Pikovsky- Rabinovich-
Trakhtengerz system describing dynamics of plasma
instability, see [Krishchenko and Starkov, 2007].
Based on the fact that our system may be expressed

as a cascade connection of two three-dimensional sys-
tems of specific types we derive a compact domain



K(h1; ρ) ∩ K(h2) being an intersection of two el-
liptic cylinders containing all compact invariant sets
of our system. This compact domain is described in
terms of parameters of the system. The key idea of
our approach is presented in [Krishchenko and Starkov,
2006]. Further, we define the localization domain
K(h1; ρ) ∩ K(h2) by applying some other localizing
functions. One global asymptotic stability condition is
given. This paper is the reworked and enlarged version
of the paper [Starkov and Gamboa, 2011] In addition,
in the complete version of the manuscript we illustrate
localization results of a chaotic attractor by numerical
simulation.

2 Preliminaries

Let us consider a quadratic system

ẋ = F (x) = Ax+ f(x), (2)

i.e. a system in which f is a homogeneous quadratic
vector field; A is a constant (n × n)- matrix; x ∈ Rn.
Let h(x) be a differentiable function such that h is not
the first integral of (2). By h|B we denote the restriction
of h on a set B ⊂ Rn. By S(h) we denote the set
{x ∈ Rn | LFh(x) = 0}. Let Q be an open set in Rn.
Next, we introduce hinf(Q) := inf{h(x) | x ∈ S(h) ∩
Q}; hsup(Q) := sup{h(x) | x ∈ S(h) ∩ Q}. If Q =
Rn then we simply write hinf = hinf(R

n);hsup =
hsup(Rn). We shall use
Theorem 1 : Each compact invariant set Γ of (2) is

contained in the localization set K(h) = {hinf ≤
h(x) ≤ hsup}, see e.g. [Krishchenko and Starkov,
2006].
The function h applied here is called localizing. It

is evident that if all compact invariant sets are located
in sets N1 and N2, with N1;N2 ⊂ Rn, then they are
located in the set N1 ∩N2 as well.

3 Ellipsoidal localization of the first three plasma
equations

As it follows from the structure of our system, the first
three equations

ẋ1 = −σ1x1 + σ1x2 + δx2x3 (3)
ẋ2 = −x1x3 + γ1x1 − x2
ẋ3 = x1x2 − β1x3

does not depend on the last three equations. However,
the last three equations may be considered as a system
with a single input which is the variable x3(t). There-
fore we shall construct a localization domain in two
steps. In this Section we find an ellipsoid containing
all compact invariant sets of (3). Then in next Sections
we improve this localization domain. Further, using the

refined localizing bounds for the function x3(t) we de-
rive the localization for all compact invariant sets for
the complete system (1).
By applying the localizing function

h1(x) =
x21
2

+
(δ + 1)x22

2
+

1

2
(x3 − [γ1(δ + 1)+σ1])

2

(4)

and using the Lagrange multiplier method we can de-
rive the following result:
Proposition 2 : For the generic system (3) with posi-

tive coefficients we have:
1) the localization bound is given by the formula

h1 sup :=
[γ1(δ + 1)+σ1]

2

2
;

2) all compact invariant sets are contained in the solid
ellipsoid

K(h1; r) =

{
x2
1

2 +
(δ+1)x2

2

2 +
1
2 (x3 − [γ1(δ + 1)+σ1])

2 ≤ r := h1 sup

}
in R3 = {(x1, x2, x3)T };

3) further, for any positive ε the solid ellipsoid
K(h1; r + ε) is a positively invariant domain.

4 Refining the localizationK(h1; r) by using ratio-
nal functions

In papers [Krishchenko and Starkov, 2007], [Starkov,
2009]. It was proposed to use specially constructed ra-
tional functions in order to remove some pieces of a
localization domain. Here this idea is applied to the
first three equations of (1).
Let us take the function

h2 =
x3

x21 + δx22

Then we get that the set S(h2) is defined by

h2 |S(h2)
ρ1(x1, x2)

x21 + δx22
=

x1x2
x21 + δx22

≤ 1

2
√
δ
,

with the quadratic form ρ1(x1, x2) = (β1−2σ1)x21 +
(β1δ − 2δ)x22 + 2(σ1 + δγ1)x1x2.
Applying the condition

β1 > 2σ1

δ(β1 − 2σ1)(β1 − 2) > (σ1 + δγ1)2

we have that ρ1(x1, x2) is positive definite and



∣∣h3 |S(h3)

∣∣ ≤ 1

2
√
δλmin(ρ1)

,

where λmin(ρ1) is the minimal eigenvalue of ρ1 :

λmin(ρ) =
1

2
(λ1,min(ρ) + λ2,min(ρ));

λ1,min(ρ) = β1 − 2σ1 + β1δ − 2δ;

λ2,min(ρ) =
√

[λ1,min(ρ)]2 − λ3,min(ρ);

and
λ3,min(ρ) = 4[(β1δ − 2δ)(β1 − 2σ1)− (σ1 + δγ1)2].

Thus we come to the localization set

K(h2) := {| x3
x21 + δx22

|≤ 1

2
√
δλmin(ρ1)

}

which gives

K(h2) ∩K(h1; r) ⊂ { x3
x21 + δx22

≤ 1

2
√
δλmin(ρ1)

}.

Below we propose another rational localizing function
h3(x):

h3 =
x3

x21 + (δ + 1)x22 + x23

We compute that the set S(h3) is defined by

h3 |S(h3)
ρ2(x1, x2, x3)

x21 + (δ + 1)x22 + x23
=

x3
x21 + (δ + 1)x22 + x23

≤ 1

2
√

(δ + 1)
,

with ρ2(x1, x2, x3) = (β1 − 2σ1)x21 + (δ + 1)(β1 −
2)x22 − β1x23 + 2[σ1 + (δ + 1)γ1]x1x2. Applying the
condition

β1 > 2σ1

[σ1 + (δ + 1)γ1]2 > (β1 − 2σ1)(δ + 1)(β1 − 2)

we have that ρ2 is positive definite and

∣∣∣∣h3 |S(h3)
ρ2(x1, x2, x3)

x21 + (δ + 1)x22 + x23

∣∣∣∣ ≤ 1

2
√

(δ + 1)
.

Now if we denote by λmin(ρ2) the minimal eigenvalue
of ρ2 then we have

∣∣h3 |S(h3)

∣∣ ≤ 1

2λmin(ρ2)
√
δ + 1

,

where

λmin(ρ2) =
1

2
(λ1,min(ρ2) + λ2,min(ρ2)); (5)

λ1,min(ρ2) = β1 − 2σ1 + (δ + 1)(β1 − 2)

λ2,min(ρ2) =
√

[λ1,min(ρ2)]2 − λ3,min(ρ2)

where

λ3,min(ρ2) = 4[(β1 − 2)(β1 − 2σ1)(δ + 1)− (6)
[σ1 + (δ + 1)γ1]2];

Thus we come to the localization set K(h3) defined
by the inequality

| x3
x21 + (δ + 1)x22 + x23

|≤ 1

2
√
δ + 1λmin(ρ2)

which gives

K(h3)∩K(h1; r) ⊂ { x3
x21 + δx22

≤ 1

2
√
δ + 1λmin(ρ2)

}.

5 Localization by additional localizing functions
Here we describe how to get closer to compact invari-

ant sets of the system (3) by finding additional localiz-
ing functions.
1. By using a localizing function

h4 =
1

2
x21 +

δ

2
x22 − (σ1 + γ1δ)x3

we obtain that the set S(h4) is defined by the equation

x3 =
σ1

(σ1 + γ1δ)β1
x21 +

δ

(σ1 + γ1δ)β1
x22.

As a result, we come to the following conclusion:
h4 inf = 0, with 1

2 > σ1

β1
and δ

2 > δ
β1

; h4 sup = 0,

with σ1

β1
> 1

2 and δ
β1
> δ

2 ; h4 |S(h4)= 0, with β1 = 2;
σ1 = 1.
Hence, if (β1−2σ1)2+δ2(β1−2)2 > 0 then we obtain

the localization set K(h4) in the following equations



{ 1
2x

2
1 + δ

2x
2
2 − (σ1 + γ1δ)x3 ≥ 0;

1
2 ≥

σ1

β1
and δ

2 ≥
δ
β1

}
;{ 1

2x
2
1 + δ

2x
2
2 − (σ1 + γ1δ)x3 ≤ 0;

1
2 ≤

σ1

β1
and δ

2 ≤
δ
β1

}
.

Besides, we have the localization set in a form of a
quadratic surface

K(h4) :=

{
1
2x

2
1 + δ

2x
2
2 − (σ1 + γ1δ)x3 = 0;
β1 = 2;σ1 = 1

}
.

2. Now by applying the quadratic localizing function

h5 = − 1

2σ1
x21 +

1

2γ1
x22 +

1

2

(
σ1 + γ1δ

σ1γ1

)
x23

we get that the set S(h5) is given by

ξ = x21 =
1

γ1
x22 +

(
σ1 + γ1δ

σ1γ1

)
β1x

2
3.

Hence, if (σ1 − 1)2 + (σ1 − β1)2 > 0 then we obtain
the localization set

K(h5) :=

−
1

2σ1
x21 + 1

2γ1
x22 + 1

2

(
σ1+γ1δ
σ1γ1

)
x23 ≤ 0,(

1− 1
σ1

)
≤ 0 and

(
1− β1

σ1

)
≤ 0

 ;

K(h5) :=

−
1

2σ1
x21 + 1

2γ1
x22 + 1

2

(
σ1+γ1δ
σ1γ1

)
x23 ≥ 0,(

1− 1
σ1

)
≥ 0 and

(
1− β1

σ1

)
≥ 0}

 .

Besides, we have a localization set in a form of a
quadratic surface

K(h5) :=

{
− 1

2σ1
x21 + 1

2γ1
x22 + 1

2

(
σ1+γ1δ
σ1γ1

)
x23 = 0,

with σ1 = β1 = 1.

}
;

3. Here we apply yet another quadratic localizing
function

h6 = − (γ1 + 1)

2σ1
x21 +

1

2
x22 +

ψ

2
x23 + x3,

with ψ = σ1+δ(γ1+1)
σ1

. Then the set S(h6) is defined
by

x21 =
1

(γ1 + 1)

[
x22 + ψβ1x

2
3 + β1x3

]
.

As a result, we come to the localization set K(h6)
given by

{
(γ1+1)
2σ1

x21 − 1
2x

2
2 −

ψ
2 x

2
3 − x3 ≤

(2σ1−β1)
2

8ψσ1(σ1−β1)
, with 1 > 1

σ1
, σ1 > β1

}
;{

(γ1+1)
2σ1

x21 − 1
2x

2
2 −

ψ
2 x

2
3 − x3 ≥

(2σ1−β1)
2

8ψσ1(σ1−β1)
, with 1 < 1

σ1
, σ1 < β1

}
.

4. Now we apply the localizing function h7 = x3.
Then the set S(h7) is given by β1x3 = x1x2. Therefore

h7 |S(h7)∩K(h1;r)≤
2r

β1
√
δ + 1

and we have the localization set

K(h7) = {| x3 |≤
2r

β1
√
δ + 1

}

which may be improved with respect to x3 for the val-
ues

β1 >
r√

δ + 1 [γ1(δ + 1)+σ1]

as

K(h1; r)∩K(h7) ⊂ {0 ≤ x3 ≤ x3,max :=
2r

β1
√
δ + 1

6 Compact localization of the (1) plasma equa-
tions

In this section we derive some compact localization
domain for the system (1) in the form of intersection
of two solid ellipsoids. In order to realize this idea we
notice that the system (1) can be considered as two
cascade- connected systems. The first one is the first
three equations of the (1) system and the second one is
the last three equations of the (1) system. Below we
shall exploit the localization condition

0 ≤ x3 ≤ x3,max.

Let us apply the function:

h8(x) = x24 + (δ1 + 1)x25 + x26 + qx6, (7)



with parameter q to be defined below. Then we derive
that

−Lfh8(x) = 2σ2x
2
4 + 2(δ1 + 1)γ3x

2
5 +A1(q)x4x5 +

A2x3x4x5 + 2β2x
2
6 + qβ2x6,

with A1(q) := 2σ2 + 2(δ1 + 1)γ2 + q;A2 := 2δ2 +
2δ1δ4 + 2δ4.
Thus the set S(h8) ∩ {0 ≤ x3 ≤ x3,max} is contained
in the set M defined by the inequality

q2

8β2
≥ 2σ2(| x4 | +

A1(q) + x3,maxA2

4σ2
| x5 |)2 +

[2(δ1 + 1)γ3 −
(A1(q) + x3,maxA2)2

8σ2
]x25 +

2β2(x6 +
q

4β2
)2

provided q is such that A1(q) ≥ 0.
As a result, we obtain
Proposition 3: Suppose that q is chosen in a such way

that A1(q) ≥ 0 and

A3(q) := 2(δ1 + 1)γ3 −
(A1(q) + x3,maxA2)2

8σ2
> 0.

Then M is a solid ellipsoid in R3 = {(x4, x5, x6)T }.
From this fact we come to the main assertion stated as
Theorem 4 : In conditions of the last Proposition we

establish that all compact invariant sets of the system
(1) are contained in the set K(h1; r) ∩ K(h8), with
K(h8) = {h8 ≤ h8 sup}, and the value for h8 sup is
estimated by

R4 := q
4
√
β2σ2

+
A1(q)+x3,maxA2

8σ2

q√
2β2A3(q)

;

R5 := q

2
√

2β2A3(q)
;

h2 sup ≤ R2
4 + (δ1 + 1)R2

5 + q2

4β2
2
.

7 Conditions of global asymptotic stability
By using Lyapunov functions and the cascade struc-

ture of the system (1) one may derive conditions of
global stability of (1). To this end let us apply the Lya-
punov candidate function

V =
x21
2

+
(δ + 1)

2
x22 +

x23
2
,

V̇ = −σ1x21+x1x2[σ1+γ1(δ+1)]−(δ+1)x22−β1x23

and get that V̇ is negative definite if it satisfies the
condition

δ + 1 >
[σ1 + γ1(δ + 1)]2

4σ1
. (8)

Now let us consider another Lyapunov candidate func-
tion

V1 =
x24
2

+
(δ1 + 1)

2
x25 +

x26
2
.

Then we derive that

V̇1 = −σ2
[
x4 −

(ρ1 + ρ2x3)

2σ2
x5

]2
−

x25

[
(δ1 + 1)γ3 −

(ρ1 + ρ2x3)2

4σ2

]
− β2x26,

with ρ1 = σ2 + γ2(δ1 + 1) and ρ2 = δ2 + δ4(δ1 + 1).
Suppose, in addition to (8), that if x ∈ K(h1, ρ) ∩
K(h2) then its component x3 is satisfied to the inequal-
ity

4σ2(δ1 + 1)γ3 > (ρ1 + ρ2x3)2. (9)

Now we notice that by construction of K(h1, ρ) ∩
K(h2) each trajectory enters into the compact invariant
domain K(h1, ρ) ∩ K(h2) and remains there. Hence
V̇1(x) < 0 for x ∈ K(h1, ρ) ∩ K(h2),x 6= 0, and
conclude that the system (1) is globally asymptotically
stable under (8)-(9).
Now we get that if

2
√
σ2(δ1 + 1)γ3 − ρ1 > 2ρ2[γ1(δ + 1) + σ1] (10)

then (9) holds in K(h1, ρ) ∩K(h2). So we have
Proposition 5 : Assume that parameters of (1) and pa-

rameter q are such that A1(q) > 0, A3(q) > 0 and
(8) and (10) hold. Then (1) is globally asymptotically
stable.

8 Conclusions

In this paper we give results concerning a locus of all
compact invariant sets of one sixdimensional system
derived by Banerjee and others. This system describes
dynamics of low- frequency, long wave-length elec-
tromagnetic fields propagating in the inhomogeneous
magnetised plasma. The domain containing all com-
pact invariant sets is bounded and defined by several
quadratic surfaces in the explicit way in terms of pa-
rameters of this system. The shape of this localization



domain is complex and may contain two holes which
are computed explicitly as well. In this study we com-
pute the compact localization domain with help of a
representation of the sixdimensional system (1) as a
cascade connection of two threedimensional subsys-
tems with a single input x3(t) going to the second sub-
system. One global asymptotic stability condition is
given. As an example, we demonstrate that in case of
chaotic values of parameters found in [Banerjee,Saha
and Chowdhury, 2001] we can efficiently localize a
chaotic attractor. The localizing bounds computed in
this work are useful not only for numerical experi-
ments aimed for studies of this plasma dynamics model
but also may be useful for constructing control laws in
chaotic regimes.
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