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Abstract 

Nonlinear modal properties of vibrating 
systems with nonsmooth (piecewise linear) 
characteristics typical of a beam with a 
breathing crack are investigated. The system is 
non linearizable and exhibits the peculiar 
feature of a number of nonlinear normal 
modes (NNMs) greater than the degrees of 
freedom. A parametric analysis of the NNMs 
has been performed for a wide range of the 
damage parameter: the influence of damage on 
the nonlinear frequencies has been 
investigated and bifurcations characterized by 
the onset of superabundant modes with or 
without internal resonance, have been 
revealed.  
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1 Introduction 

The classical modal analysis in linear 
dynamics can be extended to nonlinear 
systems by introducing the concept of 
nonlinear normal modes (NNMs). According 
to Rosemberg [Rosemberg, 1962; Vakakis, 
1996] a NNM of an undamped system is 
defined as a synchronous periodic oscillation 
where all generalized coordinates of the 
system reach their extreme values or pass 

through the zeros simultaneously. To make this 
definition suitable for nonsmooth systems, it is 
necessary to include in the definition of NNMs 
also the periodic motions in which all 
generalized coordinates vibrate not necessarily 
in a synchronous way [Chati et al., 1997; 
Vestroni et al., 2006]. The NNMs are very 
important because, in analogy to linear theory, 
resonance in forced systems typically occurs 
in the neighborhood of the frequencies of 
NNMs of the free systems. Hence, knowledge 
of the normal modes of a nonlinear system can 
provide valuable insight on the position of its 
resonances, a feature of considerable 
engineering importance. Moreover, since the 
number of normal modes of a nonlinear 
system may exceed its degrees of freedom 
(superabundant NNMs), certain forced 
resonances are essentially nonlinear and have 
no analogies in linear theory; in such cases a 
linearisation of the system either might not be 
possible, or might not provide all the possible 
resonances that can be realized. The present 
paper is devoted to analyze the nonlinear 
modal characteristics of 2-DOF mechanical 
systems with piecewise linear restoring force. 
These oscillators, Fig. 1, are roughly 
representative of an asymmetrically cracked 
cantilever beam vibrating in bending and 
hence exhibiting a bilinear stiffness depending 
on whether the crack is open or closed. This is 



  

a widely studied example of continuous 
piecesewise smooth system (PSS): in other 
words, the phase space is divided into different 
regions and the system vector field is the same 
in the adjacent regions separated by the 
boundary whereas its Jacobian changes. The 
system is non linearizable and for specific 
damage values exhibits a number of NNMs 
greater than the degrees of freedom; since the 
nonlinearity is concentrated at the origin, its 
nonlinear frequencies are independent of the 
energy level and uniquely depend on the 
damage parameter [Chati et al., 1997; Vestroni 
et al., 2006]. A contribution of the paper is 
represented by the investigation of the onset of 
superabondant modes caused by internal 
resonance: it will be shown that the shape of 
these nonlinear normal modes is very different 
than that of modes on fundamental branch and 
that their influence on the forced response is 
very significant. 

 
2 System model 

The investigated system, Fig. 1, consists of a 
2-DOF oscillator with a linear and a piecewise 
linear spring. Two cases have been consid-
ered: Model A) the linear spring of constant k2 
connects the two masses m1 and m2, whilst the 
piecewise linear spring with undamaged stiff-
ness k1 and reduced stiffness εk1 ( 10 <ε≤ ) 
connects m1 to the ground (Fig. 1a); Model B) 
the piecewise linear spring connects the two 
masses, whilst the linear one connects m1 to 
the ground (Fig. 1b). When ε=0 the two mod-
els are reduced to the same linear system.  

 
2.1 Governing equations 

By assuming: 
 ,, 1211 xyxy &== 2423 , xyxy &==  (1) 
the equations of motion read as:  
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for Model A, and: 
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for Model B. The piecewise linear stiffness, 
Fig. 1c, is given by: 
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where ki=k1, η=y1 (Model A); ki=k2, η=y3-y1 
(Model B). 
These models are then numerically analyzed 
for their NNMs in configuration space with 
procedures based on continuation techniques 
and Poincaré maps; the relevant bifurcations 
are studied as a function of damage parameter 
ε. In the following it is assumed that k1=k2=k 
and m1=m2=m. 
 
3 Normal Modes 
 
3.1 Linear Normal Modes (LNM) 

For ε=0 the system is linear and exhibits the 
two LNMs ux and uy the modal lines of which 
are reported in Fig. 2. Both lines pass through 
the origin and the frequency ratio is given by: 
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3.2 Nonlinear Normal Modes (NNM) 

As observed in Sect. 1, the NNMs are a 
generalization of LNMs: extending the 
classical Rosenberg’s definition we define 
Nonlinear Normal Mode any (non-necessarily 
synchronous) periodic motion of the system.  

For ε>0 the system becomes nonlinear and 
the two models exhibit a different dynamical 
behaviour, however some common basic 
features concerning the NNMs can be 
recognized. i) The two LNMs (ε=0) become 
NNMs for ε>0 with frequencies ω1, ω2 
independent of energy level and, for fixed 
values of m and k,  uniquely depending on ε. 



  

ii) Both ω1 and ω2 decrease for increasing ε 
and the frequency-damage law can be 
approximately determined in closed form 
[Chati et al., 1997, Casini and Vestroni, 2007]. 
iii) The frequency ratio ω2/ω1 is independent 
of m and k [Casini and vestroni, 2007]. In 
particular, the frequency ratio-damage laws in 
Model A, Fig. 3a, and in Model B, Fig. 3b, are 
significantly different giving reasons for the 
different dynamic scenarios described in next 
Section. iv) When ε varies, first and second 
NNM may interact generating (n:m) internal 
resonances [Pak, 2006]: this occurs when the 
nonlinear frequencies ω1 and ω2 are nearly 
commensurate i.e. 21 ω≅ω mn .  

 
4 Evolution of NNMs  

The evolution of NNMs and the onset of 
superabundant modes are studied as a function 
of ε. The Poincaré maps with surface of 
section η=0 and y2>0 are illustrated. NNMs 
are also described by means of the relevant 
modal line in the configuration plane. 

 
4.1 Bifurcations generated by modal 
interaction 

Figures 4 report for both modes the values 
of the damage parameter corresponding to 
bifurcations caused by modes 1 and 2 
interaction: black circles represent (n:1) 
internal resonances, gray circles (n:2) and 
white circles (n:3), (n:4), (n:5) internal 
resonances. Each internal resonance produces 
a specific structural change in Poincaré maps. 
By comparing Figures 4a and 4b it can be 
observed that, due to the different frequency 
ratio-damage laws, Model B exhibits internal 
resonances for larger values of ε; moreover 
some internal resonances exhibited by Model 
A are not possible in Model B and vice-versa: 
for instance Model B exhibits a (5:2) internal 
resonance which cannot be realized in Model 
A where ω2/ω1 is always larger than 2.62>5/2.  

Figures 5 and 6 refer to bifurcations 
occurring in (n:1) internal resonance for 

Model A; in Model B these are qualitatively 
similar but, as already noticed, take place for 
larger ε. 

Figure 5 reports the period-damage plot with 
the various branches of (n:1) periodic 
solutions: the period of Mode 2 (black curve) 
is almost constant, whereas the period of 
Mode 1 significantly increases with ε. There is 
a sequence of higher periodic NNMs 
bifurcating from the backbone of Mode 1, 
called tongues. Each tongue takes place in the 
neighborhood of a (n:1) internal resonance. 
Enlargement in Fig. 5 and Figures 6 refer to 
the case (3:1): at ε3:1 one stable and one 
unstable superabundant NNM (C) generated 
by a cyclic-fold bifurcation appear. In 
particular, figures 6 report the Poincaré maps 
with the relevant modal line in the 
configuration plane.  

Figures 7 refer to the bifurcation in the 
neighborhood of the (7:2) internal resonance: 
the first mode (A) loses its stability and 
bifurcates in a NNM (B) with period doubling. 
Furthermore a second NNM (C) appears and 
approaches the unstable NNM as long as the 
first mode recovers the stability. Qualitatively 
similar behaviour is exhibited by the other 
(n:2) bifurcations: however for larger values of 
ε, the bifurcated modal curves are more 
complicated and the windows around εn:2 
becomes narrower.  

Qualitatively different changes in the 
Poincaré maps are produced by (n:3,4,5…) 
resonances. For instance, figures 8 refer to the 
case (8:3): unlike the case (n:2), the first mode 
(A) is always stable but two pairs of stable and 
unstable NNMs (B, C) appear and disappear; 
the frequency content in B and C is 
characterized by two main frequencies the 
ratio of which is exactly 8-to-3.  
 
4.2 Bifurcations with no internal resonance 

Both models show some bifurcations 
unrelated to internal resonances. An 
interesting case is revealed in Model B where 



  

the second mode loses its stability and a 
period-doubling occurs as shown in Figs. 9. As 
it can be seen in the Poincaré maps of Figs. 9, 
besides periodic (single point) and quasi-
periodic solutions (closed curve) also chaotic 
orbit are revealed.  

4.3 Remarks 
a) The modal curves with frequency ω1 are 
bent in several waves while the ones with 
frequency ω2 are nearly straight; significant 
drift increasing with ε is exhibited by the 
second modal curves [Vestroni et al., 2006]. b) 
The occurrence of (n:m) internal resonance 
generates a structural change in the Poincaré 
map and the onset of one or more 
superabundant NNMs in which the ratio of 
frequency is exactly n/m.  c) Superabundant 
NNMs are possible also for weak 
nonlinearities; for instance in Model A, 
superabundant NNMs due to a (21:8) 
resonance arise around ε21:8=0.029. d) 
Structural changes occur in the Poincaré map 
for varying ε. It is worth noticing that some 
global bifurcations are characterized by the 
onset of pairs of stable and unstable 
superabundant NNMs while other bifurcations 
are due to the change in stability of the two 
modes: in this context it has been found that 
for both models the first mode loses and 
recovers its stability several times and the 
second mode is always stable in Model A 
whereas becomes unstable for high damage in 
Model B. 
 
5 Conclusions 

A 2-DOF piecewise smooth oscillator, 
representative of a cracked beam, has been 
studied in free oscillations. A parametric 
analysis of the NNMs has been performed for 
a wide range of the damage parameter: the 
influence of damage on the nonlinear 
frequencies has been investigated and 
bifurcations characterized by the onset of 
superabundant modes have been revealed. The 

fundamental branches of the two modes, and 
their stability are then evaluated. The 
bifurcated branches are followed by a 
numerical procedure based on continuation 
method and the stable superabundant modes 
are determined via direct integration. 
Particular attention has been devoted to the 
study nonlinear modal interaction producing 
global changes in the Poincarè maps.  
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Figure 1. System model: a) model A; b) model B; c) piecewise restoring force. 
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Figure 2. Linear Normal Modes (LNM) for ε=0: a) in-phase; b);  out-of-phase mode. 
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Figure 3. ω2/ω1 ratio-damage plot: a) model A; b); model B.  
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Figure 4. Modes 1 and 2 internal resonances (n:m): a) model A; b); model B.  

Figure 5. Model A, period-damage plot of NLMs 1 and 2: (n:1) internal resonance. 
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Figure 6. Model A: cyclic-fold bifurcation caused by a (3:1) internal resonance 
around ε3:1=0.54
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Figure 7. Model A, (7:2) internal resonance near ε7:2=0.7585: period-doubling. 
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Figure 8. Model A, (8:3) internal resonance near ε8:3=0.138. 

Figure 9. Model B: stability loss and period doubling of mode 2 around ε=0.828. 
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