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ABSTRACT studied. Here we are not concerned with the testing problem.
This paper is concerned with the problem of determination NOW we describe the goal of our method. For that we
of the finite or countable sét = {A1,Az,...} of frequencies introduce the notion of almost periodic sequence.
belonging to an almost periodic signgkc}. We seek a sim- - ajmost periodic sequence. A sequence{x} of complex
ple($|nltﬁ)comp#]§at|onal method in which a finite &= umpers is called almost periodic (in the sense of Bohr) if
{A1 7,227, ., A, } of estimators of frequencies is produced for everye > 0 the set{r L SUR Xkt — Xk| < e} is relatively
at each stage n from the finite observatifry, ...,x;n} of ~ densgorin more modern terms, hasunded gapsAlmost
the sequence. We also wakyi converges td\ but yet each periodic sequences share many properties of almost periodi

An is not too big. functions [3]. For example, the Fourier coefficient
We provide a method based on the local maxima of 10

weighted discrete Fourier transform of the finite obserwati o i

of the almost periodic sequence. The produced estimators aA) = A'L'L n k;xkexp( IAk)

are taken from a finite grid 2mrj/(Cn) : j =0,...,Cn—1}

of [0,2m). They converge to the true frequencies with rateexists for everyA € T ~ R/2m ~ [0,2m) and the set of fre-
0 (n~1). We first consider that the signal is observed withoutquencies\ = {A € T : a(A) # 0} associated to the almost
noise, and secondly with an additive noise. Then this methogeriodic sequencéx} is at most countable. The frequen-
is adapted to an almost periodically correlated signal alsociesA and coefficients(A ), A € A, are uniquely determined

called almost cyclostationnary signal. by the almost periodic sequen¢r} and for this reason it
is said that each almost periodic sequence has an associated
1. INTRODUCTION (unique) Fourier series,
Many man-made signals, even natural ones, exhibit period- - :
icities. So in applies studies, the detection of the fregiemn % z a(A)explirk)

. . ! L Xen
from data is essential. To give an example in signal theory, €

determination of the frequencies is often used for idemtfic \yhere ~ is not to be taken as equality except under addi-

tion problems (e.g. speech recognition [13]). Many othekjona| assumptions. For example, any trigonometric polyno
applications can be found in communication theory, climayja| function is almost periodic and its set of frequendies
tology, econometry, to name but a few (see e.g. [2, 6, 12]). s finite. For any countable familyA, } taken fromT, and

The evolution of signal processing device entails a perany family {a, } of complex numbers such, |ay| < o, then
manent need to perform more efficient methods for detectan’almost periodic the sequenpg} is defined by

ing the presence of frequencies and estimating these fineque
cies [5]._ Thus there is a large amount _of works on frequency X = z ay expliAvk).
estimation or testing problem. In particular for trigondme &
ric polynomial signals with additive noise (see e.g. the sur
vey [1] as well as [4, 8, 10, 11, 14, 15, 16] for some of theAim : Frequency determination. Suppose we are given
more recent papers). In recent papers, He [9, 10] has preke sequencéx,} one element at a time; in other words, we
posed a method based on threshold for the local maxima gfre given the finite sequencéso, ..., X} forn=12,....
the discrete Fourier transform of a signal with a finite num-Now if we are told, a priori, that som& belongs toA, then
ber of frequencies. The comparison of these methods witf,o sequence
the strong local maxima introduced below is out of the scope
of this paper. 1

The aim of this paper is the determination of the set of an(A) = = Z X exp(—iAk)
frequencies of an almost periodic sequence, using a simple 2n &y
finite (few time consuming and with lower complexity) com-
putational method based on the local maxima of the discreteonverges t@(A) # 0, and ifA ¢ A then limyan(A) = 0.
Fourier transform (or more precisely a weighted version of  Given the practical constraint of finite computations, we
the discrete Fourier transform). An estimation procedsre iwish to determine\ by a limit of a sequence of operations,
presented and the asymptotic properties of the estimates agach of which involves only a finite number of calculations.



At each computation stagewe compute a finite set of fre- random variables
quencies
(@), (@), AL (@)} = An()

from Ya(w) = {yj(w) = X; +zj(w), j = 1,2,...,n}. We
taken from afinite grid 27tj /(Cn) : j=0,...,Cn—1},using  show that if SUPE{#'} < o, then the same algorithm that
only the finite subsequenc{e@,...,XZn}. The positive inte-  solves the non-random problem produces,iitp(w) = A
ger constan€ is accurately chosen in the following. Next with probability one. The rate of convergence/ign—1).
we require that Finally, we apply the algorithm for the determination of
(i) limnAn = A, meaning that for every € A there is asub- the frequencies of an almost periodically qorrelated_ ramdo
sequence{/\nj}with Anj € An, and lim; A, = A, and any sequence [7] also_ called al_most gyclostatlonnary sigrjal [6
convergent sequend@, } taken from the setéAn} (An € Now the frequencies are hidden in the covariance kernel of
An for anyn) converges only to an element &f the random sequence.

(i) Anis not too big in the sense that convergent sequence§giation. From now on we considef £ R/21T ~ [0,21)

taken from the seté\,} converge only to elements 6f ; il A i Y .
In other wordsA\ is the limiting points ofUp/Ap. with the metric distA", A") = mm{\/\ A +2kn| ke Z}'

We note that the latter property is needed because the 2. STRONG LOCAL MAXIMA ALGORITHM
finite set/\n:{2nj/(Cn) :]=0,...,Cn—1} (asetwe can ] o
specify without computing anything) satisfies the prop@jty The basic approach to obtaining the convergencépfo
but yet is too big in the sense that a convergent subsequengeis to computea&w) (A) on a uniform grid, and then to

toanyA € T can be found; i.elJAn = T. . place anyA j(n) € My in the setA, whenever an acceptance
Moreover, two difficulties appear here. First we do not

b h | b v a fini b criterion is satisfied. In this paper we investigate how well
observe the complete sequer{og}, but only afinite subse- ¢ algorithm based on strong local maxima gives the desired

quence{xy,...,%}. Secondly we do not studh(A) for A convergence.
varying InT, but only in a finite grid.

For the non-random case we construct an algorithm fop.1 Bartlett kernel
determining/\,, that gives us the desired convergence. Fo
this purpose we select what we call tegong local max-
ima of a weighted versioraﬁ]w)() of the discrete Fourier o
transforman(-). As weighting sequencéw,” }, we use a2 1 Z)kag‘rl)ke)(p(_m K)

Bartlett (triangular) kernel, for the strong shape of thexiima n&

mum of its discrete Fourier transform, and for its tractiapil

in Fourier analysis. With this kernel, we obtain a better lo-where {Wf(”)} is the Bartlett (triangular) weight sequence
calization of the true frequencies, and we limit the numbetyiyen bywl((n) =1—|k|/nfor |k| <n andwl((m — 0 otherwise.
of false estimates. Other weighting kernels can be used (e. ) ) ()1 -

Parzen kernel), however for sake of simplicity we present ou' he discrete Fourier transform 6, "} is

study with Bartlett kernel. n sinz(n)\ /2)

Whenever the sek of frequencies of the sequengr,} Wa(2) 2 5> wiV exp(—iAk) = — 12
is finite, that is we have a trigonometric polynomial, we can k=—n nsir®(A/2)
isolate each frequency, and the convergendsg,a$ obtained
from the properties of the weighting kernel.

Whenever the set is not finite, but countable, we can no
longer isolate each frequency, and we can obtain a sequen

{/\\5:)} of strong local maxima which converges to a paint )
which is not a frequency ofxc}. Thus we need to study the Wh(7/(Cn)) (sin(n/(ZC)))

An 2 AV ALY

We observexg, ..., %on, and determine the collection of am-
plitudes usingveightedrFourier coefficient estimator

Note that the functio\,,(-) is non-negative continuous
onR andW;(0) = n. It satisfieswh(A) < Wq(2mt/(Cn)) for
ggy)\ such that digtA,0) > 2mt/(Cn), C > 2. This function
1I5decreasing ofD, 2r1/n| and

behavior of the sequenda’" (A\) } to decide whether the Wi (0) 1/ (2C)
limit point A is a true frequency of the sequenp}. .
Moreover we obtain that any frequendye A can be es- @sh— o, for anyC # 0. Thus for any 6< ) < 1 there exist
timated by a sequence of strong local maxima with a rate dn > 0 andnc, > 0 such that for ang > C, and anyn > ny
convergence of ordef(n~1). 2
Next we suppose now that randomness is added to the n < (1_ w ) < Wn(n/(Cn)) <1
problem. First, rather than observing the almost periodic s 24C2 Wh(0) '

quence{xc}, we observe the noisy sequence For instance, there existsc > 0 such that forn > nc,
Wn(rr/(Cn))/Wn(O) >.949 forC > 4

Y= X+ & On the other hand, given9 é < 1, we have
where {x} is a non-random almost periodic sequence and Wh(A) 1
{z} is an zero-mean random sequence with some asymptotic Wh(0) ~ (?) )

independence. For simplicity of exposition we assume here
that the sequenci} is p-mixing. As before, at each stage asn — o, where the/ is uniform with respect td provided
we compute a finite number of frequencies which are nowdist(A,0) > d.



2.2 Strong local maxima

For computing stage, computeaﬁl‘"’) (A) for the values of
A taken on the uniform (equally spaced) gFig = {/\j<”> =

2mj/(Cn) : j =0,...,Cn—1} whereC is a fixed positive
integer. The constar@ determines the density of the sam-
pling net and is chosen (qualitatively) so that severaleslu

of Wn()\j(”>) near tow,(0) are present in the sample. We will
assign\ j(") to Ay if al’ (A j(”)) is locally maximumand also
strong More precisely

Definition 2.1 A frequency index *jis said to produce a
strong local maximunwith parameters K Kz, Kz € (1, )
if

(W)

" (AM)| > [ (A"M)| for |j* — | <Ky,
and
2" (A7)] = Ka[ah” (A")| for Ka<|j | <Ko

In this paper the point\j(f)

imum.

€ T is called astrong local max-

(n)

At a strong local maximum, the amplitucjeﬁw) ()\j*

)]

is at leasK3 times larger than its neighbors except for those

nearby (j* — j| < K;). Moreover, whemj(f) is a strong lo-

s fork = (Ky +1),..., +Kq,

cannot be ones. Further }?fj(f) and/\<n>

cal maximum then th&

¢ are strong lo-

j+
cal maxima for som& = +1,...,+K; then ]af\lm ()\j<,[\'))| —
[’ (A

The next proposition states that for any frequehgythe

algorithm of strong local maxima produces a sequence which

converges ta\,. This shows only that strong local maxima
satisfy the first requirement for ligl\, = A.

Proposition 2.2 Let {xk} be an almost periodic sequence

3. NISFINITE

WheneverA is finite, the sequencéx} is a trigonometric
polynomial. As described above, we compafé’) (A) for

the valuest = A" = j271/(Cn) , j=0,1,...,Cn— 1, where

C is a positive integer. Then using the properties of the dis-
crete Fourier transform of the Bartlett kernel, we state tha

convergent sequences taken from the converge only to
elements of\ whenA is finite.

Proposition 3.1 If {x} is an almost periodic sequence with
A finite, and if A, is determined by the algorithm of strong
local maxima using the Bartlett kernel with € 2,K; =
3C,Ky = 4C, K3 = 10, then every convergent sequence taken
from the set A} converges to an element &f

From Propositions 2.2 and 3.1, we deduce that p=
N, for A finite.

Results of simulation. In order to help our understanding
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Figure 1: o : card\ = 50 randomly chosen amplitudes
and frequencies without additive noise+ : frequencies
and amplitudes determined by strong local maxima with
n=1024C = 4, K; = 16,K, = 13, K3 = 100.

and letA, be one of its frequencies. Then there exists a se-

quence of strong local maxim[a\é:)} determined by the al-
gorithm of strong local maxima using the Bartlett kernekhwit
C > 2,K; = 3C,K, = 4C,K3 = 10, which converges ta, as

n — oo, and verifies

dist(A(",A,) < c% and ]a.&m ()\\S:))’ > 8ay],
for any n> ng. The integer g can be chosen large enough
for there is no strong local maximuh]m) € N\, such that

8m
et

an < distA{”.A) <

Hence we obtain that, for > ng, ng being sufficiently large,
anyA, € A admits at most two strong local maximé:) such
that dis{A.,A,) < 2Ko7/(Cn) = 8m/n. If there are two,

they are the two nearest points of the grid from each side of

Av, and they have the same modu’a‘é'”) (/\\5:)) ‘
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Figure 2: o : card\ = 50 randomly chosen amplitudes
and frequencies without additive noise+ : frequencies
and amplitudes determined by strong local maxima with
n=28192C =4, K; =16 K, = 13 K3 =100.



of the situation, the algorithm of strong local maxima was Hence we easily deduce that for amy 0, every conver-
|mplemented in MATLAB code. For programming conve- gent sequence of strong local maxima from the @(gi)}
hience we also took the sequenjog} to be real. Then we conyerges to an element af

set qard_\ = 50 and choose the f_requenC|es from_ a un|f(_)rm Finally, whenever{/\n} is a sequence of strong local
distribution on[0, i1 and the amplitudes from a uniform dis- -+ Wwhich converges to somg € T, we cannot say

tribution on(0, 1]. whether the limitho b imi
. ’ o belongs toA. In order to eliminate the
In f 1 2 whene= 1024 142, th 27
n figures 1 and 2 where = 1024 and 8142, there are points of T \ A we study the behavior ) (An) asn — o

and 48 frequencies identified. However, evemat 8142, ; e
there are a few frequencies that are not yet resolved. WWe state the following characterization of the frequency se

need to take a greater valuerofo separate them. Theorem 4.2 Let {x} be an almost periodic sequence with
frequency sef\. An elemenfig € T is a frequency, that is
4. NIS COUNTABLE Ao € A, if and only if there is a sequence of strong local max-

o ima {An} Which converges tdg and such that
Let xk} be an almost periodic sequence. Then we know

that its set of frequencies is at most countable, say = Iimsup|aﬁ]w) ()\n)| —ag> 0.
{A1,...,Av,... } and it admits a Fourier series representation N—sc0

X ~ 3y av exp(iAvk), with 3, |ay|? < . Moreover there  Furthermore ifAg = A, € A then we havé < ap < |ay|.

fr:(i?tls a seq(l;)ence of trfigon;amg:ﬂc polyni)Tdi(ﬁmZ} S_Il_lﬁh Then we deduce
at limy oy (k) = x¢ uniformly with respec €Z. The ,
trigonometric polymonials can be chosen such that Corollary 4.3 If a sequence of strong local maxin{a, }

converges to somi ¢ A then
i aW
Amo an’ (An) =0.

Remark that thanks to Proposition 2.2, for any freque_ncy
and with the notatiomy , = 0 for v > n(N), we have 0< Av (f) A\, there exists a sequence of strongv)loc(zil) maxima
vy < 1 foranyv, and limy 1 rny = 1 (see e.g. [3]). Then {Ay,’} which converges tdo and such thatay” (Ay,”)| >
limyrnvay = ay, and for anyN the setAy of frequencies .8|a, | for sufficiently largen. Thus for this sequence
of oy is finite, Ay 2 {Av € A:rnyay # 0} C A Hence for
anyN we write

n(N)
on(X) = Z N, av expiAvX),
v=1

8lay| < liminf|a” (A7) | < limsuga” (A[)| < Jaul.
— 00 n—oo

a§1W>()\) _ a(NV\,Ir)w()‘)"‘R;\IV\,’%(’\)v 5. THE RANDOM CASE
Working now in a stochastic context, we first consider the
where fundamental case of a non-random signal with an additive
Lo noise. Then we fit our analysis to the case of an almost peri-
amr)]()\) A - Z)UN(k) WE]n_)kexp(—i)\ K) odically correlated stochastic sequence.
. k= 5.1 Almost periodic sequence observed with noise
R,(\,V‘_',)](/\) 4 1 z (Xk _ O'N(k)) ng)k exp(—iAk). Here we prove that the strong local maxir_na algorithm using
' nN\% the Bartlett kernel also produces the desired result when we
only observe
Then we apply the same arguments as in Section 3 for the Yi = X+ Z

trigonometric polynomial sequen¢en(-)}. Thusthe claim  \here {x} is a non-random almost periodic sequence and
of Proposition 2.2 remains valid for any almost periodic se-{z 1 is a sequence of zero-mean random variables defined on
quence{x}. a probability spac¢€Q, .7, P).

However, consider the almost periodic sequehgé de- In a classical way we assume that the random vari-
fined byxc =y, ayexpiAyk) with A= {A, =1-1/v:ve  ables{z] satisfy some asymptotic independence. For sim-
N*} anda, = 1/v2. Then 1¢ A and the set of strong local plicity of exposition we assume here thgg} fulfills the
maxima converges t& = AU {1}. So Proposition 3.1 is not P-mixing property that is lin.. p(k) = 0 wherep(k) :=
generally valid. Neverthless, a localization propertyti s sup{|corf,g]|} where the supremum is taken over &l&
proved using thresholds qargw) (/\J(n)) I TS, ﬁ.LZ(P), g€ Fo NL%(P) ands € Z, with Z{ being

the o-field generated byz : s< k <t}. For example, any

Lemma 4.1 Assume that for some fixed>a0, the closed Stationary Gaussian sequencgigixing, as well as any-
dependent sequence.

interval B(A,r) contains no frequen ch thata a:
interval B(A, ) ns A quencyy su tav] > At each stage of the strong local maxima algorithm we
B(A,r)NA® —0whereA® = {A, e A:|ay| >a}. Thenfor  compute
anye > 0 there exists an integerrsuch that for any n> ng, L
the closed interval B\, r) contains no strong local maximum (W) (n) .
’ an (A,w) ==Y (X+z(w))w ’ exp(—iAk)
A" € Anwith [al” (AM)| > ate :BA,NNART =0 2n k;( ok

whereA @) £ {)\j(n) €An: [al” ()\j(n))| >a+e}. =a M)+ (), w)



foranyA € T and anyw € Q. Results of simulation. We apply the strong local max-
In order to show that the strong local maxima algorithmima algorithm to a signal which the sum of an non-random
applied to the observatiofy} gives the desired sequence of almost periodic sequende} and a noisgz}. Asin Sec-
frequency sets, we note that the first term of the right handion 3 the almost periodic sequenfe} has a finite number
side of the previous equality is no random, and can be studf frequencies cardl = 50 which are chosen from a uniform
ied as previoulsy. The second one is negligible and we firddistribution on[0, 1] and the amplitudes from a uniform dis-
show the convergence in quadratic mean and almost sure tfbution on[0, 1]. Here the additive noisgz} is a sequence

bW (1) to O uniformly with respect td in T asn — co. of independent, identically distributed random varialstés
lowing the zero-mean Gaussian law with unit variance.

Lemma5.1 Assume that the sequen{g} is p-mixing
andsup E[|z/*] < «.
i) Then
lim suplal™ (A, w) —aﬁ,w)()\)‘ =0 qg.m.
N=%)er

ii) Assume in addition than(n) = o(n~%/2) as n— « then

lim nasuqaﬁ,w*)()\,w) —aﬁ]w)(/\)‘ =0 qm. if e<1/4
—s 00 A

and

lim nssudaﬁ,w*)()\,w) faﬁw)()\)‘ =0 as. if e<1/8

A
Then we readily verify that the results of the non-radom

case can be easily translated in our noisy setting. Proposi-

tion 2.2 is adapted in the following way

Proposition 5.2 Assume that the noidey} is p-mixing with
p(n) =o(n"/2) as n— o, and sup E[|z|*] < ». For any
frequencyA, € A of the signal{xy}, there exists a sequence
of random variableg A"’} such that

i) Xé? takes its values if2mrj/(Cn) : j =0,...,Cn—1},

i) lim P[X\Sm) is a SLM for any m> n} = 1 where the

strong local maxima (SLM) are determined by the algo-
rithm of strong local maxima using the Bartlett kernel with
C>2K; =3C,Ky, =4C,K3 =10,

iiiy dist(AS"”,Ay) < 27/n+11/(Ch)
v) lim P[[ah" (A")| > 8Jav]| = 1.

everywhere

As a converse result we state the following.

Proposition 5.3 Assume that the noiséz} is p-mixing,
sup.E[|z*] < ». Let{A,} be a sequence of random vari-
ables such that

i) An takes its values ig2mj/(Cn): j=0,...,Cn—1},

i) r!im P{)\m is a SLM for any m> n| = 1where the strong

local maxima (SLM) are determined by the algorithm of
strong local maxima using the Bartlett kernel with>
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Figure 3: o : card\ = 50 randomly chosen amplitudes
and frequencies with additive noise,= 1. + : frequen-
cies and amplitudes determined by strong local maxima with
n=1024C =4, K; = 16,K, = 13 K3 = 100.
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Figure 4: o : card\ = 50 randomly chosen amplitudes
and frequencies with additive noise,= 1. + : frequen-
cies and amplitudes determined by strong local maxima with
n=28192C =4, K; = 16,K, = 13 K3 = 100.

In figures 3 and 4 where = 1024 and 8142, there are 9

2,Ky =3C,K, =4C,K3 = 10. e > ; < !
_ and 33 frequencies identified. It is not surprising that ia th
iii) the sequencegAn} converges a.s. to some random vari- nojsy context there are less identified frequencies thalnein t
able Ao, non-random case in Section 3. Note that the identified fre-
. , ) guencies are among those which have the largest amplitudes.
iv) P Ilmsup{an (An)|=a0

nN—oo

variable g such thatg@ > 0 a.e.

=1 for some random

5.2 APC process

Consider a real-valued zero-mean almost periodically cor-
related proces$xy}, that is a zero-mean second order pro-
cess such that for any € 7Z the shifted covariance function

ThenP[)\o € /\} = 1. Moreover0 < a < |ay| a.e. on{Ap =
Av} A €A
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and the algorithm works perfectly. When the #eis prop-  [14] J.A. Rice & M. Rosenblatt "On frequency estimation”,

erly countable each frequency can no longer be isolated, and ~ Bijometrika 75, 477-484, 1988.

we can obtain asequence of strong local maxima which corl]'L—ls]

verges to a point Wh'.Ch IS not a true freq.ugncy. The proble with amplified harmonics”). R. Statist. SoB, vol.52

is resolved using weighted Fourier coefficients. T ' e

a using : (1), 203-221, 1990.

_In additive noisy context, when the noise presents asymp[—16 S. 3. Yakowits. "S tributions thod of f
totic independence (e.g. a mixing property), this methisd st [16] S. J. Yakowitz, "Some contributions to a method of fre-
applies. Of course it is less efficient. The detection of the ~ duency determination by He and KedertEEE Trans.
hidden frequencies of an almost periodically correlated se ~ On Information Theoryvol. 37 (4), 1177-1182, July
guence can be done with this algorithm. 1991.
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