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Abstract
The concept of nonlinear normal modes (NNMs) is

discussed in the present paper and its companion, Part
I. Because there is virtually no application of the NNMs
to large-scale engineering structures, these papers are
an attempt to highlight one aspect that might drive their
development in the future. Specifically, we support that
numerical methods for the continuation of periodic so-
lutions pave the way for an effective and practical com-
putation of NNMs. In this context, we show that the
NNMs computation is possible using an existing con-
tinuation software, namely AUTO07. This is demon-
strated using a 2DOF nonlinear system. The results are
compared with those obtained with the Matlab algo-
rithm described in Part I.

Key words
Nonlinear normal modes, periodic solution, numeri-

cal computation, orthogonal collocation, continuation
techniques, AUTO software.

1 Introduction
The concept of NNMs is encountered when one tries

to interpret nonlinear dynamic phenomena during the
free response of a discrete conservative mechanical
system withn degrees of freedom (DOFs) whose mo-
tion is described by the following governing equation:

Mẍ(t) + Kx(t) + fnl {x(t), ẋ(t)} = 0 (1)

whereM is the mass matrix;K is the stiffness matrix;
x, ẋ andẍ are the displacement, velocity and accelera-
tion vectors, respectively;fnl is the nonlinear restoring
force vector.
The two main definitions of an NNM are given in the

companion paper, Part I, and their detailed description
and fundamental propeties can be found in [Vakakis
et al., 1996; Vakakis, 1997; Kerschen et al., 2008].

An NNM can be viewed as an extension of the well-
established concept of linear normal modes (LNMs)
to nonlinear systems. In this paper, we use the ex-
tended definition of an NNM given in [Kerschen et al.,
2008] and also used in the companion paper, that is the
NNM motions are(non-necessarily synchronous) pe-
riodic motions of the conservative mechanical system
(1).
In this context NNMs represent families of periodic

orbits of the conservative system. In view of this, it
is surprising that there have only been few attempts
to compute NNMs using numerical methods [Slater,
1996; Pesheck, 2000; Lee et al., 2005; Arquier, 2007].
Indeed, methods to compute periodic orbits in nonlin-
ear systems based on numerical continuation are well-
established (see, e.g., [Allgower, 1997; Seydel, 1994]).
Moreover, softwares that implement these methods
have been developed for a number of years and are
readily available (see, e.g., [Doedel, 2007a; Govaerts,
2007]).
In the following, it is shown that the AUTO software

can be used to efficiently compute NNMs. It confirms
the view of the authors that numerical methods can
provide an efficient and practical alternative to analyti-
cal asymptotic methods that too often rely on complex
mathematical developments.

2 Computing NNMs in AUTO
In this part details are given on which strategy to adopt

to compute NNMs using AUTO software. First, the
software AUTO and its main capabilities are presented.
Then, the problem of NNM computation is described.
Finally, the strategy used to compute NNMs is given.

2.1 AUTO07, software for continuation and bifur-
cation analysis

AUTO is a software for continuation and bifurcation
problems. Although it can perform limited continua-
tion and bifurcation analysis on algebraic problems and
partial differential equations it is primarily suited to the



study of ordinary differential equation of the form:

g(z, λ) = 0 (2)

whereg andz aren-dimensional vectors andλ denotes
one or more parameter. This software has proven suc-
cessful in dealing with a wide variety of problems, from
chemical reactions to population evolution and much
more (for a more complete list of AUTO applications
see [Doedel, 2007b]). In structural dynamics, it has
been extensively used for the computation of forced
response and limit cycle arising in nonlinear dynami-
cal systems (see, e.g., [Touzé et al., 2007; Sérandour,
2005]).
AUTO relies on the orthogonal collocation method to-

gether with the pseudo-arclength continuation for the
continuation of periodic solutions.
Considering the fact that AUTO is well-known within

the engineering community and that it has been used
for structural dynamics problems, it is surprising that
few attempts have been made (to the authors’ knowl-
edge) to compute NNMs using this software. We will
show in the following section that although the NNM
computation problem is not represented by an equation
of the form of (2), this can be easily circumvented to
allow AUTO to be used in that particular case.

2.2 Computation of periodic orbits in conservative
systems

As briefly described in the introductory section,
NNMs can be viewed as families of periodic orbits of
a conservative system. This poses a problem when one
wants to use continuation schemes for their computa-
tion. Indeed, continuation codes such as AUTO allow
for the computation of periodic orbits when those are
isolated and depend on an external parameterλ as in
(2). The problem is then solved as a two-point bound-
ary value problem withλ as the primary continuation
parameter and the period of the periodic solution as a
secondary continuation parameter. For instance, when
computing the forced response of a dissipative system,
one can use the forcing frequency as an explicitly avail-
able primary parameter and the periodic orbits are in-
deed isolated due to the dissipative character of the sys-
tem. This ceases to be valid when considering a con-
servative system, and an alternative formulation needs
to be devised. Such a problem has been described in
depth in [Muñoz-Almaraz et al., 2003]. A way to over-
come the absence of primary continuation parameter is
to introduce the so-called unfolding parameter together
with its unfolding function in the equations describing
the conservative system. This has for effect to intro-
duce an additional parameter that will subsequently be
used as the primary parameter for the continuation. It
is worth noting the peculiarity of this strategy is that
the unfolding parameter remains null at all time for a
periodic solution to exist. This concept is explained in
more details in [Sepulchre, 1997]. This strategy has

been used in [Doedel et al., 2003] for the computation
in AUTO of families of periodic orbits in conservative
systems and can be seen as a blueprint for the compu-
tation of NNMs in AUTO.
Let us consider the problem described by (1). Its pe-

riodic orbits are solutions of the following system of
equation:

g(z) = 0 (3)

and the following periodicity condition:

z(0) = z(T) (4)

where

g(z) =

(

ẋ

−M−1 [Kx + fnl(x, ẋ)]

)

(5)

z = [x∗ ẋ∗]∗ (6)

and T is the period of the solution and star denotes the
transpose operation. This is usually reformulated in the
following adimensional form:

Tg(z) = 0 (7a)

z(0) = z(1) (7b)

We now introduce the unfolding parameterλ. Its asso-
ciated unfolding functionGλ is obtained from the first
integral of the system described by (1), that is the total
energyE of the system, and is given by:

Gλ(zi) =
∂E(z)

∂zi
i = 1 . . . 2n (8)

It is now possible for AUTO to continue periodic solu-
tions of the following boundary value problem:

T g(z) + λGλ(z) = 0 (9a)

z(0) = z(1) (9b)

where T is the unknown period andλ is the primary
continuation parameter. When computing periodic so-
lution, AUTO automatically adds to the system de-
scribed by (9) an integral phase constraint to ensure the
unicity of the solution.
It is worth mentioning that, although the first integral

of the system is the most appropriate choice for deriv-
ing the unfolding function, it is perfectly acceptable to
choose an unfolding function corresponding to damp-
ing instead, as shown in [Doedel et al., 2003; Arquier,
2007]. This can be extremely convenient when an ex-
pression of the gradient of the first integral becomes
difficult to obtain (i.e., systems with a large number of
DOFs).



2.3 Strategy for the computation of NNMs with
AUTO

Now that it has been established that periodic orbits
of conservative systems can be computed in AUTO, it
remains to define a strategy to apply this method to the
calculation of NNMs. Indeed, continuation with AUTO
can only be achieved if an initial solution is known a
priori and is used as starting point for the continua-
tion. In the case of NNMs, we do know that at low
energies (i.e., small amplitude of motion), the nonlin-
ear effects remain negligible for certain types of non-
linearity, and the NNMs are equivalent to the LNMs of
the underlying linear system. One way of computing
the starting point for the AUTO continuation would be
to solve the underlying linear system for low level of
energy and use the results of this analysis as starting
point for the study of the nonlinear system. There are
two main drawbacks to this approach, namely we do
not know a priori what constitutes a low level of en-
ergy at which nonlinear effects remain negligible and
we increase the computational burden by looking for a
complete solution to the linear problem. An alternative
strategy has therefore been used in the present study.
We first compute independently the natural frequen-

cies of the underlying linear system by solving the sim-
pler eigenvalue problem. We then compute a branch of
trivial solutions (i.e.E = 0) using the period as con-
tinuation parameter while setting the unfolding param-
eter to zero. Computing solutions forE = 0 ensures
that NNMs and LNMs are indeed equivalent and have
similar resonant frequencies at which non-trivial solu-
tions will coexist with trivial solutions. Indeed, at these
particular frequencies, degenerate bifurcations occur.
Branch switching is then performed in order to switch
to the branches of non-trivial solutions and points on
these branches are used as starting points for the con-
tinuation of periodic orbits, using this time the unfold-
ing parameter as primary continuation parameter.

3 Numerical Example
The NNM computation with AUTO is now demon-

strated using a 2DOF system similar to that described
in the companion paper. The governing equations of
the system are

ẍ1 + (2x1 − x2) + 0.5 x3

1
= 0

ẍ2 + (2x2 − x1) = 0 (10)

Solving the eigenvalue problem of the underlying lin-
ear system leads to two natural eigenfrequencies that
are f1 = 1/2π ≃ 0.159 Hz (T1 = 1s) andf2 =√

3/2π ≃ 0.276 Hz (T1 =
√

3s). Following the strat-
egy described in the previous section we can continue
two branches of non-trivial solutions starting from the
two aforementioned frequencies. These branches rep-
resent synchronous NNMs (S11+ andS11−) that are
described in Part I. At low energy level they are identi-
cal to their linear counterparts. As the level of energy

increases, the frequency-energy plot (FEP) in Figure 1
clearly shows that both the modal curves and frequen-
cies of oscillation are dependent on the system total
energy. The continuation of NNMs with AUTO also
confirms the main features that have been described in
the companion paper and in [Peeters et al., 2008]. Fol-
lowing the S11− branch at high energy level shows
that the1:1 out-of-phase motion persists and S11- ex-
tends to infinity. TheS11+ branch has a rather more
complex behaviour, where internal resonance appears
at higher level of energy as seen in Figure 2. Indeed,
the symmetric motionS11+ becomesS31 where a3:1
internal resonance appears between the in and out-of-
phase NNMs. The motion, however, remains symmet-
ric as seen in Figure 3. This process is then repeated
when S31 becomesS51 and so on... In addition to
that, unsymmetric motions (U21, U41...) also arise at
high level of energy. These differ from the aforemen-
tioned internally resonant motions as they are not direct
continuation of the symmetric solution but appear at
branch point bifurcations. Their computation requires
branch switching at the bifurcation points. Figure 4
shows that, between the two branch point bifurcations
(BP), the branch of symmetric solutionsS11+ coex-
ists with a branch of unsymmetric solutionsU21. The
results from AUTO and the method described in the
companion paper are in perfect agreement, as shown in
Figure 2.

4 Comments and Conclusion
This paper has shown that NNMs can be computed

with the readily and freely available continuation soft-
ware AUTO. All the features that are typical to NNMs
and that have no linear conterparts have been observed
and the results obtained match those described in the
companion paper, Part I. The computation of NNMs
with AUTO requires a careful choice of AUTO com-
putation constants, most importantly the mesh interval
and the number of collocation points. This is partic-
ularly true when the internal resonance ratio increases
(i.e. S71, U81...). In addition, the fact that unsym-
metric solutions occur at branch switching bifurcations
imposes to monitor all special solutions (i.e. branch
points). This paper has also shown that the apparent
difficulty in computing NNMs using analytical asymp-
totic methods can be conveniently overcome using nu-
merical methods, either with a limited implementation
effort, as shown in the companion paper, or using exist-
ing tools, as presented in this paper. This paves the way
for an effective and practical computation of NNMs.
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Muñoz-Almaraz, F.J., Freire, E. , Galn, J., Doedel,
E., Vanderbauwhede, A. (2003) Continuation of Pe-
riodic Orbits in Conservative and Hamiltonian Sys-
tems.Physica D, 181, pp. 1-38
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Figure 1. Frequency-energy plot of the 2DOF system computedwith the proposed numerical method. NNM motions depicted inthe configu-

ration space are inset. The horizontal and vertical axes in these plots are the displacements of the first and second DOFs,respectively; the aspect

ratio is set so that increments on the horizontal and vertical axes are equal in size to indicate whether or not the motion is localized to a particular

DOF.
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Figure 2. S11+ at higher energy levels and internally resonant NNMs (U21, S31, U41, S51). Results from both AUTO (left) and the

method presented in Part I (right) show perfect agreement.
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Figure 3. Close-up of theS11-S31 transition occuring at a Fold bifurcation (LP). The NNM timeresponse over one period are inset, showing

that the solution remains symmetric.
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Figure 4. Close-up of theS11-U21 transition. The NNM time response over one period are inset,illustrating the symmetry breaking

phenomena occuring between the two branch point bifurcations (BP).


