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Abstract 

This paper investigates mitigation of 
vibrations in 2 DOF forced linear system with 
nonlinear energy sink (NES) attached. It is 
shown that analytic methods developed recently 
for description of periodic and strongly 
modulated response regimes in the two DOF 
harmonically excited systems (containing NES) 
may be successfully applied for 3 DOF system.  
Ability of the properly tuned NES to 
successfully absorb energy for each excited 
mode of the linear subsystem is demonstrated. 
Proposed methodology of the NES tuning 
guidelines is based on the analytical treatment 
developed for the system under investigation. 
Essentially nonlinear vibration absorber is 
compared to the best tuned linear one and 
excitation zones of preference of the nonlinear 
absorber are revealed.   
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1 Introduction  

The most popular solution in a vibration 
isolation design is a linear vibration absorber, 
where an additional linear degree of freedom is 
added to the existing linear or weakly nonlinear  
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system for the purpose of attenuating vibration 
over a narrow frequency range centered at the 
natural frequency of the absorber [Den Hartog 
J.P. (1956)].  
Resent works [Gendelman O.V. (2001); 
Gendelman O.V., Vakakis A.F., Manevitch L.I. 
and McCloskey R., (2001); Vakakis A.F. and 
Gendelman O.V. (2001); Vakakis A.F. (2001); 
Vakakis A.F., Manevitch L.I., Gendelman O., 
Bergman L. (2003); Gendelman O.V. (2004); 
Gendelman O.V., Starosvetsky Y. (2006); O.V. 
Gendeman, Y.Starosvetsky, M. Feldman (2007); 
Y. Starosvetsky , O.V.Gendelman, (2007); E. 
Gourdon, N.A. Alexander, C.A. Taylor, C.H. 
Lamarque, S. Pernot (2007)] has motivated us to 
extend an analytical and numerical treatment to a 
harmonically excited 3-dof system (including 
NES attached).  The structure of the paper is as 
follows. The second section is devoted to model 
description. Section three brings an analytical 
treatment including periodic regimes and 
strongly modulated response (SMR) description. 
Section 4 is fully based on the analytical 
treatment developed in section three and 
provides NES tuning guidelines.  Section 5 
contains numerical verifications of the analytical 
model and also studies effectiveness of the NES 
compared to the linear vibrations absorber.  
Section 6 contains concluding remarks and 
discussion. 
 



2 Model 
The system considered in the present 

paper consists of harmonically excited two-dof 
system of linear coupled oscillators (with 
identical masses) and nonlinear energy sink 
(NES) attached to it. By the term nonlinear 
energy sink we mean a small mass (relative to 
the linear oscillator mass) attached via strongly 
nonlinear spring (pure cubic nonlinearity) and 
linear viscous damper to the linear subsystem as 
it is illustrated at Fig.1.  

 
Figure 1. Mechanical model of the system 
 
As it was mentioned above masses of linear 
oscillators are identical. The general system is 
described by the following equations: 
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where are the displacements of the 

linear oscillators and NES respectively, 
1 2, ,y y v

λ  is the 

damping coefficient,  are the 

amplitudes of excitation of each linear oscillator. 
System (1) may be rescaled in the following 
way: 
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            Where  is an arbitrary, non-

dimensional coefficient. Substitution of (2) into 
(1) yields the following non-dimensional set: 
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 Prime denotes the differentiation with respect to 
τ . 1ε <<  is a small, non-dimensional 
parameter which establishes the order of 
magnitude for external excitation, damping, 
coupling and mass of the NES which is adopted 

to be  ( m
M ε= ).  By setting 

; ;v v i ik k F Fε ε λ ελ= = = system (3) 

transforms to: 
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Two natural frequencies of the linear oscillators 
are assumed in the work as incommensurate, 
remote (distance between dimensionless 
frequencies is of order O(1)) and fixed. 

Therefore the value of spring stiffness  was 

picked in a way to provide two distinct 
incommensurate natural frequencies. Thus, 

2k



taking  one obtains the following natural 

frequencies

2 1k =

2 13, 1ω ω= = . 
Modal coordinates are introduced according to 
the following relationship: 
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Transforming (3) into modal coordinates and 
performing additional rescaling one obtains: 
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For the sake of convenience all the tilde marks 
are omitted.  
 
3 System Regimes   

Dynamic responses of a linear oscillator 
coupled to a nonlinear energy sink (NES) under 
harmonic forcing in the regime of 1:1:1 
resonance have been studied in details [O.V. 
Gendeman, Y.Starosvetsky, M. Feldman (2007); 
Y. Starosvetsky , O.V.Gendelman, (2007)]. In 
the current paper we don’t bring the detailed 
analytical treatment developed by 
O.V.Gendelman, (2006). However, it is essential 
to note that due to the fact that the natural 
frequencies of the linear substructure are remote 
and incommensurate the model can be reduced in 
the vicinity of each excited mode to yield the 
two-dof system treated in details in [Y. 
Starosvetsky , O.V.Gendelman, (2007)]. Thus, 
the previously developed analysis can be applied 
for the system under consideration. 
 Applying the analysis developed in [Y. 
Starosvetsky , O.V.Gendelman, (2007)] we are 
able to depict periodic, quasi-periodic and 

strongly modulated response regimes. We begin 
with the description of the simple periodic 
regimes. Performing the following changes of 
variables (in the vicinity of the first excited 
mode): 
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 Introducing (6) into (5) and performing 
averaging over one forcing period it is possible 
to bring the system to the following form of 
autonomous, averaged equations: 
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Taking 1 2 0wϕ ϕ ϕ= = = in (7) one derives the 

frequency response curves of periodic regimes.  
Corresponding frequency response diagrams are 

illustrated as the magnitude of wϕ  vs. frequency 

of excitation (Fig.2).  

 
Figure 2. Frequency response diagram in the 
vicinity of the first excited mode. Blue lines refer 
to the stable periodic responses when the red 
ones refer to the unstable ones. System 
Parameters: 

1 21, 3, 0.4, 1, 0.01vA A kλ ε= = = = =  
 



 Frequency response diagram for the second 
excited mode is obtained in the similar manner 
and is illustrated on Fig. 3.  

 
Figure 3. Frequency response diagram in the 
vicinity of the second excited mode. Blue lines 
refer to the stable periodic responses when the 
red ones refer to the unstable ones. System 
Parameters: 1 21, 3, 0.4, 1, 0.01vA A kλ ε= = = = =  
 
Saddle node and Hopf bifurcations were revealed 
by the stability analysis.  They are marked on the 
frequency response diagrams (Figs. 2-3). 
Additional system response is referred to as a 
strongly modulated response (SMR). Further 
analytical treatment of the SMR will be briefly 
presented in the vicinity of the first excited 
mode. Since the natural frequencies are remote 
and we are considering the excitation in the 
vicinity of the first mode thus the influence of 
the second (unexcited) mode can be omitted.  
This can be derived straightforwardly from the 
asymptotic analysis performed.  Therefore 
considering the following change of variables: 
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Substitution of (8) into (5) and averaging over 
one forcing period yields: 
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It is apparent from system (9) that the averaged 

part of an unexcited mode ( 2x ) enters the 

equations (9) in epsilon order and it doesn’t 
affect the system dynamics in the leading 
approximation. Since in the analysis presented in 
[Y. Starosvetsky , O.V.Gendelman, (2007)] for 
both fast and slow regions of system evolution 
only the leading approximation was used, 
therefore further treatment of (9) remains similar 
to this of [Y. Starosvetsky , O.V.Gendelman, 
(2007)]. In this paper we use the developed 
earlier analysis in order to estimate the regions of 
the SMR existence in the frequency domain (for 
each excited mode).  
As it was demonstrated earlier introducing two 
time scales ( t − fast and tτ ε= −  slow) and 
applying multiple scales analysis it is possible to 
derive the slow invariant manifold (SIM) on 
which the system exists when exhibiting the 
slow type motion.  

2
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Further multiple scales expansion provides 
another set of differential equations describing 
the system dynamics on the SIM.         
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Presenting 2ϕ  in the form ( 2 exp( )iϕ ϕ θ= ) 

we draw a phase portrait (Fig. 4).  

  
Figure 4. Phase portrait of the slow invariant 
manifold 



The region above and the region below  

on the phase portrait refer to the stable branches 
of SIM when the intermediate region 

( ) refers to the unstable one. 

Therefore the slow system evolution is depicted 
on these regions.  

2N 1N

1N N N< < 2

Observing the phase portrait presented 
at Fig. 4 we can see that there is an interval of θ  

- [ 1 2θΘ < < Θ ] for which all the phase 

trajectories are repelled from the lower fold  

(

1N

1NΦ = ).  In the regime of the relaxation 

oscillations, the phase trajectory jumps from a 
point of this interval to the upper branch of the 
SIM, then it moves along the line of the slow 
flow to the upper fold line, then jumps back to 
the lower branch and moves to the lower fold 
line, commencing in one of the points of the 

interval  in order to enable the next 

jump. Therefore it is natural to consider this 

regime as mapping of the interval  into 

itself – the regime of the relaxation oscillations 
will correspond to attractor of this one – 
dimensional map.  

1 2[ , ]Θ Θ

1 2[ , ]Θ Θ

In order to build the relevant mapping, we 
should consider separately the "slow" and the 
"fast" parts of the mapping cycle. As for the 
"slow" parts on the lower and the upper branches 
of the SIM, we can use equations (11) and 
directly connect the "entrance" and "exit" points. 
Due to complexity of the equations, this part of 
the mapping should be accomplished 
numerically. As for the "fast" parts, the function 
φ2 should be continuous at the points of contact 
between the "fast" and the "slow" parts. 
Therefore, for "fast" parts of the motion one 
obtains complex invariant C(τ1), defined by 
Equation (10). If one knows its value at the point 
of "start", it is possible co compute N and θ for 
the point of "finish" unambiguously and thus to 
complete the mapping. The procedure of 
numerical integration should be performed twice 
– for two branches of the SIM. Two invariants 

should be computed for two "fast" jumps, in 
order to determine their final points. 

Not every trajectory which starts from 
the lower fold of the SIM will reach the initial 
interval since it may be attracted to alternative 
attractor at the upper or the lower branch of the 
SIM, if it exists. Of course, only those points 
which are mapped into the interval can carry 
sustained relaxation oscillations. The mapping 
procedure is illustrated at Figs. 5-6 

 
Figure 5 One dimensional mapping; 

1, 0.6, 0.2Aσ λ= = = . 

 
Figure 6 One dimensional mapping; 

2.9, 0.6, 0.2Aσ λ= = = . 

.        The mapping at Fig. 5 exists for all 
points of the interval and is obviously 
contractive. Therefore one can expect existence 
of stable attractor corresponding to the regime of 
the relaxation oscillations (or SMR). By 
increasing the detuning parameter value (Fig. 6) 
one can notice that the mapping lines tend to the 
right and there is also a region on the basin 
which doesn’t contain any lines. This region 
relates to the unaccomplished cycles, namely to 
the phase trajectories which started from the 
region and have been attracted to the periodic 
response attractor before they have reached the 



basin one more time. The mentioned trajectories 
are not illustrated on the diagram. It is clear from 
Fig. 6 that there is no stable attractor of the SMR 
and for every initial condition on the basin the 
system finally (after sufficient number of cycles) 
leaves the basin.  

By now we can conclude that for some 
increased values of detuning parameter the SMR 
attractor vanishes.  
Running with the values of detuning (σ ) and 
for each step performing the mapping one can 
track the value of σ  for which the attractor 
vanishes. This provides a general tool for 
determination of the frequency region for the 
existence of strongly modulated response.    
As it was stressed above we are able to apply the 
developed earlier analysis by reduction of the 
system in the vicinity of each mode. Therefore, 
using the procedure based on one dimensional 
mapping diagram we are capable to estimate 
analytically the frequency intervals for the region 
of SMR existence. Let us consider the following 
frequency response diagrams (Fig. 7) in the 
vicinity of each excited mode. 
 

 
Figure 7 Frequency response diagrams. 
Frequency region of SMR existence is marked 
with the dashed lines.  Blue lines refer to the 
stable periodic responses when the red ones refer 
to the unstable ones. System Parameters: 

1 21, 3, 0.2, 1, 0.01vA A kλ ε= = = = =  
 
The left diagram of Fig. 7 corresponds to the first 

excited mode ( 1nω = ) when the right diagram 

corresponds to the second one ( 3nω = ).  

Favorable regimes in a sense of vibration 
mitigation are periodic and quasi-periodic ones 
(related to the lower branch of periodic regimes) 
and also SMR. As we can see from the diagrams 
there is also an undesired response related to the 
upper branch of the periodic regimes. Designing 
the properly tuned NES we should take the 
undesired responses into consideration, trying to 
avoid or at least weaken the undesired response 
as much as possible. 
 
4  NES Tuning Guidelines 

Main guidelines of nonlinear vibration 
absorber tuning will be presented in current 
section. Tuning procedure is based on the 
analytical treatment results of previous section. 
As it was shown in [Y. Starosvetsky, 
O.V.Gendelman, (2007)] strongly modulated 
response can be much more effective from a 
point of view of vibration absorption then simple 
periodic one in the close vicinity of main 
resonance (1:1). Thus, the main goal of the 
tuning procedure is to allow excitement of the 
SMR in occurrence of each mode for the same 
attached NES (without changing NES 
parameters). This situation may be realized in 
various engineering applications when linear 
structure undergoes harmonic loading in a wide 
range of the excitation frequencies. Thus there is 
a need for a protection of the system in the whole 
range of excitation frequency including both 
dangerous modes. We will demonstrate the 
tuning procedure concept by considering the 
following example.  
Example 1 

Let us consider the following 
parameters of excitation amplitudes and mass of 

the nonlinear absorber , 1 21; 3A A= =

0.01m ε= =  correspondingly. We need to 

find a pair of NES parameters ( ,vk λ ) which 

allows SMR excitation in the vicinity of each 
mode of linear subsystem.  In order to find such 
a pair we actually change NES parameters 



( ,vk λ ) with a small step and for each pair we 

construct the one dimensional maps in the 
occurrence of each excited mode. When we 
finally obtain a certain frequency ranges of SMR 
existence (stable attractor of the one dimensional 
map) about each excited mode we actually 
satisfied the base requirement of the tuning 
procedure. Say we have performed the described 
procedure and found a certain pair of  

1, 0.2vk λ= =  parameters which allows SMR 

excitement in the neighborhood of each mode.  
For this pair we are plotting frequency-response 
diagrams in the occurrence of each mode (Fig. 
7). These diagrams consist of periodic regimes 
amplitudes and frequency range of existence of 
SMR calculated using one dimensional map 
approximation described in the previous section. 
Despite the excitement of the SMR in the 
vicinity of each mode one can note the 
dangerous situation in the neighborhood of the 
left bound of the SMR for the first excited mode. 
Observing the diagram of Fig. 7 for the first 
excited mode we can see Hopf bifurcation occurs 
on the lower stable branch slightly before the 
region of SMR existence (left bound). This 
bifurcation causes an undesired effect on the 
system response since the loss of stability by the 
lower branch may be accompanied by the jump 
to the upper stable branch which results in large 
vibration amplitudes. In order to avoid this effect 
we should attempt to translate Hopf bifurcation 
of the lower branch into the region of the SMR 
existence thus assuring continuation from lower 
stable branch regimes into SMR (without jumps 
to higher amplitudes). Therefore, increasing 
damping parameter from 0.2λ = to 

0.4λ = we plot the same frequency response 
diagrams for each excited mode (Fig. 8).  
Frequency response diagrams presented on Fig. 
8 suggest for the continuation between lower 
stable branch and SMR for both modes.  

In the next section numerical simulation 
for the entire frequency range (including both 
modes) will be carried out for the systems with 

zero initial conditions and it will be shown that 
there are no jumps to the upper branches.   

 
Figure 8  Frequency response diagrams in 
occurrence of each excited mode. SMR regions 
of existence calculated via one dimensional map 
are bounded by the dotted lines.  Solid red lines 
refer to unstable solution when blue solid lines 
refer to the stable ones. System Parameters: 

1 21, 3, 0.4, 1, 0.01vA A kλ ε= = = = =  
 

It is essential to note that there is also a 
possibility for the upper stable branch regimes 
excitement by appropriate initial conditions. 
However it will be shown in the following 
section that those regimes may be excited only 
by high magnitudes of initial deflections relative 
to the amplitudes of an external forcing 

( 1,A A2ε ε ). In the present work it is also 

assumed that an excited system doesn’t suffer 
from strong additional excitations (e.g. impacts, 
pulses) which are definitely able to translate it to 
the upper branch.  

Summarizing the results of an example 
provided above we have seen that it is not 
enough to excite SMR in the vicinity of both 
system modes, but it is also extremely important 
to follow after stability of the lower branch of 
periodic regimes amplitude. As soon as we 
manage to translate the bifurcation point of the 
lower branch of periodic response into the region 
of SMR existence we can enjoy the effectiveness 
of NES application in a 2-dof linear subsystem.  
 
5 Numerical Simulations 

In order to study NES performance we 
plot system response (for zero initial conditions) 



vs. frequency of excitation in the entire 
frequency range, including both modes of the 
linear subsystem. System response is presented 
in terms of maximum linear subsystem energy 

like component ( ) vs. 

frequency of excitation Fig. (9a), maximal 
deflection of each dof of linear subsystem 

( ) vs. frequency of excitation (Fig. 9 b, c), 

mean amplitude deflection of each dof of linear 
subsystem vs. frequency of excitation (Fig. 9 d, 
e). On the same plots we also illustrate the 
response of an optimally tuned linear absorber. 
Linear absorber was tuned numerically according 
to the objective function of the minimal sum of 
two resonant peaks of the frequency response 
curve.  System parameters for the following 
simulations 

are:

2 2
1 2max( )y y+

1 2,y y

1 21; 3; 1; 0.4; 0.01vA A k λ ε= = = = =  

 
Figure 9 a) Linear subsystem energy like 
response vs. frequency of excitation; red bold 
line refers to the system response with NES 
attached when dotted blue line refers to the 
system response with tuned linear absorber 
attached. b, c) Maximal amplitude deflection of 
linear subsystem dofs; red bold line refers to the 
response with NES attached when dotted blue 
line refers to the response with tuned linear 
absorber attached. d, e) Mean amplitude 
deflection of linear subsystem dofs; red bold line 

refers to the system response with NES attached 
when dotted blue line refers to the system 
response with tuned linear absorber attached. 
 

We proceed with the numerical 
estimation of the parametric zones of external 
amplitudes of excitation for which SMR 
generated by NES is better then system response 
with best tuned linear absorber attached. Fig. 10 
demonstrates dotes on a plane of external 

excitation ( ) for which SMR is preferable 

on the responses of the system coupled to the 
tuned linear absorber.         

1 2,A A

 
Figure 10 External excitation plane, dotes are 
related to those excitation amplitudes for which 
SMR is preferable on the response of system 
coupled to the tuned linear absorber. 
 
Observing the results presented on Fig. 10 one 
can notice that preference of the SMR arises for 
the relatively high amplitudes of excitation. This 
result is not surprising at all since as it comes 
from the analytical model the upper branch of 
the SIM doesn’t depend on the amplitude of 
excitation. Therefore for some low amplitudes of 
excitation SMR may be already excited however 
system response will be rather high comparing 
with the case of linear absorber application. In 
the case of high amplitudes of excitation system 
response with linear absorber attached will 
overcome the SMR response. This is due to the 
fact that SMR is weakly affected by the growth 
of the amplitude of excitation contrary to the 
case of linear absorber application.  



In order to demonstrate the robustness of the 
periodic response regime related to the lower 
stable branch of the frequency response curves 
and strongly modulated response we have 
performed numerical integration for the random 
set of initial conditions. Thus, randomly picking 

300 triples of initial deflections 10 20 0( , , )x x v in 

the following range 

original system 

(5) was integrated numerically in the vicinity of 
each mode. Random data of initial conditions for 
which system (5) was integrated is presented on 
Fig. 11.  

( )10 20 0( 0.5 , , 0.5)x x v− ≤ ≤

Figure 11 Random data of the initial deflections 
in the range .  ( )10 20 0( 0.5 , , 0.5)x x v− ≤ ≤
 
For simulations for various values of frequency 
of excitation were performed. Each simulation 
was done for the random set of initial deflections 
data (initial velocities are set to zero) shown on 
Fig. 11. Two frequencies of excitation were 
picked for each mode. The first selected 
frequency refers to the region of two stable 
periodic regimes coexistence not including SMR. 
The second one refers to the region of 
coexistence of SMR together with stable periodic 
response related to the upper branch of frequency 
response curve.  Frequencies of excitation are as 
follows: 

( )
( )

First mode:      =1+ ;     = -1, -0.8 

Second mode: = 3+ ;  = -1.5 , -1

ω εσ σ

ω εσ σ
 

System parameters: 

1 21, 3, 0.01, 0.4, 1vA A kε λ= = = = =  

The results of the performed simulations are 
illustrated on Fig. 12. Each point of the random 
set of initial conditions is marked with respect to 
the type of the steady state response regime 
obtained by numerical integration started from 
this particular initial condition. Thus 'diamond' 
marker refers to SMR, 'dot' marker refers to the 
periodic regime of the lower stable branch and 
'circle' marker refers to the one of the upper 
stable branch.  

 
Figure 12 Initial conditions data for several 
frequencies of excitation. Dots are related to the 
periodic r response regime of the lower stable 
branch; Diamonds are related to the SMR 

 
It is clear from the results brought on Fig. 12 that 
for the frequency of excitation in zone of the 
coexistence of two periodic regimes for both 
modes all the trajectories which correspond to 
the brought above initial conditions are attracted 
to the lower stable branch of periodic response 
regime. For the frequency of excitation in zone 
of the coexistence of SMR and periodic 
responses for both modes, all the trajectories 
corresponding to the same set of the initial 
conditions are attracted to the SMR. Obtained 
results provide additional confirmation of the 
robustness of the periodic regime related to the 



lower stable branch and SMR in the vicinity of 
zero initial conditions. It is essential to note that 
the range of initial deflections is of magnitude 
which is much higher then the magnitude of the 
external excitation.    
 
6 Conclusions 

Considered system is comprised of 
harmonically forced two DOF linear subsystem 
(primary system) and essentially nonlinear 
attachment. It is shown that analytical methods 
developed in [Y. Starosvetsky , O.V.Gendelman, 
(2007)] for the description of periodic regimes 
and SMR may be successfully applied to the 
described three DOF system in case when modal 
frequencies are remote and incommensurate. 
Derived analytical model is used for estimation 
of system responses and guidelines for the 
nonlinear absorber tuning are formulated. As it 
comes from numerical simulations in some cases 
of high amplitudes of excitation nonlinear 
absorber may effectively absorb energy from the 
primary linear subsystem for both excited system 
modes. In these cases nonlinear absorber appears 
to be much more favorable then linear one.  Thus 
summarizing the drawbacks of the essentially 
nonlinear vibration absorber we note its 
inefficiency for the low amplitudes of excitation 
and an existence of additional branch of periodic 
regimes with relatively high magnitude. 
However as it was demonstrated in the previous 
section the last drawback may be minimized by 
proper NES design and these regimes are not 
excited for the certain range of initial conditions. 
The magnitude of this range is much bigger then 
the amplitudes of an external excitation and thus 
provides a fairly good approximation to the real 
life applications.  

Thus, each case of external loading 
should be revisited by the designer and proper 
absorber should be selected taking into account 
the whole packet of their advantages and 
drawbacks.       
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