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Abstract
We consider quadruples of matrices (E,A, B, C),

representing singular linear time invariant systems in
the form

Eẋ(t) = Ax + Bu
y = Cx

}
(1)

with E, A ∈ Mp×n(C), B ∈ Mp×m(C) and C ∈
Mq×n(C) under proportional and derivative feedback
and proportional and derivative output injection.
In this paper we present a canonical reduced form pre-

serving the structure of the system and provides a de-
composition of the system into two independent sys-
tems, one being a maximal regular system and the sec-
ond one a minimal completely singular one.
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1 Introduction
We denote by Mp×q(C) the space of complex matri-

ces having p rows and q columns, and in the case which
p = q we write Mn(C). We consider the set M of
quadruples of matrices (E, A, B, C) representing fam-
ilies of singular linear time invariant systems in the
form Eẋ = Ax+Bu, y = Cx with E, A ∈ Mp×n(C),
B ∈ Mp×m(C) and C ∈ Mq×n(C), and we define an
equivalence relation that permit us to decompose the
system into two independent systems one being a max-
imal regular system and the second a minimal com-
pletely singular one. Each one of the subsystems de-
compose into independent systems in the form.

{
ẋ1 = N2x1 + B1u
y1 = C1x1

(2)

{
ẋ2 = N3x2 + B2u (3)

{
ẋ3 = N4x3

y3 = C2x3
(4)

{
ẋ4 = Jx4 (5)

{
N1ẋ5 = x5 (6)

{
L1ẋ6 = R1x6 (7)

{
Lt

2ẋ7 = Rt
2x7 (8)

{B3u3 = 0 or {C3x8 = 0. (9)

System (2) is a maximal controllable and observable
subsystem, system (3) is the maximal controllable no
observable subsystem, system (4) is the maximal ob-
servable no controllable subsystem , system (5) is a
standard system with no modifiable finite zeros, system
(6) is a system containing all no transferable infinite
zeros, and finally systems (7) and (8) are completely
singular systems.
The equivalence relation considered is the one that ac-

cept one or more, of the following transformations: ba-
sis change in the state space, input space, output space,
feedback, derivative feedback, output injection, deriva-
tive output injection and premultiplication by an invert-
ible matrix.



In the sequel we will use the following notations.
- In denotes the n-order identity matrix,
- N denotes a nilpotent matrix in its reduced form N =

diag (N1, . . . , N`), Ni =
(
0 Ini−1

0 0

)
∈ Mni

(C),

- J denotes the Jordan matrix J = diag (J1, . . . , Jt),
Ji = diag(Ji1 , . . . , Jis

), Jij
= λiIij

+ N ,
- L denotes the diagonal matrix L = diag (L1, . . . , Lq),
where Lj =

(
Inj

0
) ∈ Mnj×(nj+1)(C),

- R denotes the diagonal matrix R =
diag (R1, . . . , Rp), where Rj =

(
0 Inj

) ∈
Mnj×(nj+1)(C),
- t, rc y ro determine the quantity of controllable and
observable, controllable no observable and observable
no controllable blocks that appear in an standard triple
of matrices.e

2 Equivalence of singular systems
We consider singular linear as in (1), many interesting

and useful equivalence relations between singular sys-
tems have been defined. As pointed in the introduction,
we deal with the equivalence relation accepting one or
more, of the following transformations: basis change in
the state space, input space, output space, operations of
state and derivative feedback, state and derivative out-
put injection and to premultiply the first equation in (1),
by an invertible matrix. That is to say.

Definition 1. Two quadruples (Ei, Ai, Bi, Ci) ∈
M, i = 1, 2, are equivalent if and only if there ex-
ist matrices P ∈ Gl(n; C), Q ∈ Gl(p; C), R ∈
Gl(m; C), S ∈ Gl(q;C), FB

E , FB
A ∈ Mm×n(C),

FC
E , FC

A ∈ Mp×q(C) such that

E2 = QE1P + QB1F
B
E + FC

E C1P,
A2 = QA1P + QB1F

B
A + FC

A C1P,
B2 = QB1R,
C2 = SC1P.

Given a quadruple of matrices (E, A, B,C) ∈ M, we
can associate the following matrix pencil

H(λ) =




λE + A λB B
λC 0 0
C 0 0


 ,

and we have

Proposition 1. Two quadruples are equivalent under
equivalent relation considered if and only if the asso-
ciates matrix pencils are strictly equivalent.

So, we can apply kroneckers theory of singular pencils
(see [5]).

Corollary 1. Let H(λ) be a matrix pencil associated
to the quadruple (E, A, B, C) ∈ M. Then H(λ) it is

equivalent to the pencil λF + G with

F =




L
Lt

I1

N


 , G =




R
Rt

J
I2




Then, we can reduce any quadruple to a simpler form.
This reduced form does not preserve the structure of
the system, so, we propose the following reduced form
as starting point to obtain the desired reduction.

Theorem 1. Let (E, A,B,C) ∈ M be a quadruple
of matrices. Then it is equivalent under equivalence
relation considered, to a quadruple (Eω, Aω, Iω, Iω)
in the following form:

((
E

0

)
,

(
A

0

)
,

(
0

Ib

)
,

(
0

Ic

))

where (E, A) is a pair in its Kronecker reduced form.

A collection of structural invariants to the quadruple
(Eω, Aω, Iω, Iω) characterizing equivalent quadruples
is the following collection of numbers

i) ω1 ≥ ω2 ≥ . . . ≥ ωz ≥ 1 nilpotency indices
ii) k1(λ) ≥ k2(λ) ≥ . . . ≥ kjλ

(λ) ≥ 1 Segre charac-
teristic corresponding to eigenvalue λ

iii) ε1 ≥ . . . ≥ εrε > εrε+1 = . . . = εrk
= 0 column

minimal indices
iv) η1 ≥ . . . ≥ ηlη > ηlη+1 = . . . = ηlk = 0 row

minimal indices

3 New canonical reduced form
Theorem 2. Let (E, A,B,C) ∈ M be a quadruple
of matrices. Then it can be reduced under equiv-
alence relation considered, to the following reduced
form (Ec, Ac, Bc, Cc):

((
I1 0
0 Ek

)
,

(
Ae

Ak

)
,

(
Be 0
0 0

)
,

(
Ce 0
0 0

))

where (Ae, Be, Ce) and (Ek, Ak) are in its Kronecker
reduced form (see [6], [3] respectively).

Proof. Let (E, A,B, C) be a quadruple and
(Eω, Aω, Iω, Iω) its reduced form given in The-
orem 1. So, the quadruple (Eω, Aω, Iω, Iω) is
partitioned in the following manner






Er

Es

0


,




Ar

As

0


,




0 0
0 0
Ib 0


,

(
0 0 Ic

0 0 0

)




with

(Er, Ar) =







I1

I2

N


 ,




J
J0

I3







and

(Es, As) =
((

L
Lt

)
,

(
R

Rt

))

We proceed by performing the following steps.
Step 1: We consider the subquadruple

(E′, A′, B′, C ′) :







L
Lt

0


 ,




R
Rt

0


 ,




0
0
Ib


 ,

(
0 0 Ic

)



and we take the subtriple:

((
L
0

)
,

(
R
0

)
,

(
0
Ib

))

and we distinguish two cases depending on relation be-
tween rk and b.
a) rk ≤ b
In this case the triple is written







L
0

0


 ,




R
0

0


 ,




0 0
Irc 0
0 It







with rc = rk, t = b− rc ≥ 0. Then, it is controllable.

Detailing the subtriple
((

L
0

)
,

(
R
0

)
,

(
0

Irc

))
, we

have

(
L
0

)
=




L1 0
0 0

L2 0
0 0

. . .
...

Lrε 0
0 0

0




(
0

Irc

)
=




0 0
1 0

0 0
1 0

. . .
...

0 0
1 0

0 0 0 Irc−rε




(
R
0

)
=




R1 0
0 0

R2 0
0 0

. . .
...

Rrε
0

0 0
0




It is easy to verify that the controllability indices of
each subsystem

((
Li

0

)
,

(
Ri

0

)
,

(
0
Bi

))
=

((
Iεi 0
0 0

)
,

(
0 Iεi

0 0

)
,

(
0
1

))

i = 1, . . . , rc are kco
i = εi + 1.

Fixed t, we have that the maximal quantity of ob-
servable no controllable blocks in the pair (Lt, Rt) is
ro = c− t. Then if lk > ro, we have that the subtriple
((Lt 0), (Rt 0), (0 Ic)) is completely no observable.
We write this triple in the form

((
Lt

1 0
Lt

2 0

)
,

(
Rt

1 0
Rt

2 0

)
,

(
0 Ir0 0 0
0 0 0 It

))

where the pair (Lt
1, R

t
1) contains the first ro-blocks and

the pair (Lt
2, R

t
2) contains the rest of l = lk−ro-blocks.

The subtriple ((Lt
1 0), (Rt

1 0), (0 Iro)), written in the
form

(
(Lt

1 0)
(0 Iro)

)
=







Lt
11 0

Lt
12 0

. . .
Lt

1rη
0

0







0 1
0 1

. . .
0 1

0 0 0 0 . . . 0 0 Iro−lη







(
(Rt

1 0)
(0 Iro)

)
=







Rt
11 0

Rt
12 0

. . .
Rt

1rη
0

0







0 1
0 1

. . .
0 1

0 0 0 0 . . . 0 0 Iro−lη







,



is observable and observability indices of each subsys-
tem

((Lt
1i 0), (Rt

1i 0), (0 C1i)) =

((
Iηi 0
0 0

)
,

(
0 0

Iηi 0

)
,
(
0 1

))

i = 1, . . . , ro are kco
i = ηi + 1.

We observe that, if rk ≤ b, then the pencil(
λEk + Ak Ib

Ic 0

)
has column full rank. It have row full

rank if and only if lk = ro, that is to say, lk ≤ c.
b) rk > b
In this case, if lk > c, the subquadruple

(E′, A′, B′, C ′) is no controllable and no observable
and it can be decomposed into two independent sub-
triples: a triple no controllable







L1

0
L2


 ,




R1

0
R2


 ,




0
Ib

0





 ,

where the pair (L1, R1) contains the first rc − b blocks
and the pair (L2, R2) contains the rest r = rk−b blocks
and the other no observable triple

((
Lt

1 0
Lt

2

)
,

(
Rt

1 0
Rt

2

)
,
(
0 Ic 0

))
,

where the pair (Lt
1, R

t
1) contains the firsts ro−c blocks

and (Lt
2, R

t
2) contains the rest of the l = lk − c blocks.

Obviously, t = 0.
Now, we take the subtriple

((Lt 0), (Rt 0), (0 Ic))

whose study is analogous to the previous one. If lk ≤ c,

then the pencil
(
λEk + Ak Ib

Ic 0

)
has row full rank. It

will have column full rank if and only if rk = b − t,
that is to say, rk ≤ b, where t = c− lk.
Step 2: Now we consider the quadruple

(E′, A′, B′, C ′) obtained in step 1. If t 6= 0, we
separate the subquadruple (E1, A1, B1, C1) :

((
0

N

)
,

(
0

I3

)
,

(
It

0

)
,
(
It 0

))

the nilpotent matrix N has z blocks, N =
diag (N1, . . . , Nz).
a) z ≤ t
Making elementary transformations, the subquadruple

(E1, A1, B1, C1) is reduced to

E1 =




0
N1

. . .
0

Nz

0




A1 =




0
I31

. . .
0

I3z

0




B1 =




1
0

. . .
1

0
It−s




and

C1 =




1
0

. . .
1

0
It−s




It is easy to verify that each subsystem
(E1i, A1i, B1i, C1i), i = 1, . . . , z in the form

E1i =
(
0

N

)
, A1i =

(
0

I

)
,

B1i =
(
1
0

)
, C1i =

(
1 0

)
,

is controllable and observable and the controllable-
observable indices are kco

i = ωi + 1.
b) z > t
In this case, the subquadruple (E1, A1, B1, C1) can be

decomposed in the form







0
N1

N2


 ,




0
I31

I32


 ,




It

0
0


 ,

(
It 0 0

)



where (N1, I31) contains the first t blocks of nilpotency
and (N2, I32) the rest s = z − t-blocks.



4 Conclusion
In this paper we present a canonical reduced form

preserving the structure of the system providing a de-
composition of the system into independent subsys-
tems where the structural properties of the system as
controllability, observability for example, can be easily
described.
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