
 
 
 
 
 
 
 
 
 
 
 
 

A “WORST CASE” UNCERTAINTY SELECTION WITHIN A PROBABILISTIC CRITERION 
CONTROL PROBLEM STATEMENT 

 
 

Kirill Chernyshov 
 
 

V.A. Trapeznikov Institute of Control Sciences 
65 Profsoyuznaya, Moscow 117997, Russia 

E-mail: myau@ipu.rssi.ru 
 
 
 
 

Abstract: A refined statement of a probabilistic criterion control problem, appeared in the 
literature at the ridge of the centuries, is proposed and the corresponding approach to 
solve it is derived. The approach is oriented to taking into account conditions of existence 
of the resulting domain of the admissible controls (non emptiness of the intersections of 
the “partial” domains), as well as to provide the conditions of unambiguous selection of 
the “worst” probabilistic distribution(s) of the plant output model variable. As a basic 
analytical tool, probability theory inequalities are applied. Various numerical examples 
are presented to confirm the theoretical inferences. Copyright © 2007 IFAC 
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1. PRELIMINARIES 
 
In a paper of Bernatskii et al. (2000), a method to 
find a non-linear industrial plant robust control is 
proposed. Its essence is to use an assumption that the 
plant output model variable distribution belongs to a 
class of distributions, whose make-up is not known a 
priori. Representatives of the class are the condi-
tional probability distributions whose parameters are 
determined at each step via experimental data. For 
the each representative, a domain of admissible con-
trols (DAC) in accordance to a probabilistic criterion 
is determined. The intersection of the DACs received 
for separate representatives, to opinion of Bernatskii 
et al (2000), is not empty (what generically is wrong) 
and, by virtue of limitations imposed on the control 
vector components, forms a robust control domain. 
In turn, to select the representatives, an entropy 
based approach is, in particular proposed. The en-
tropy approach is based on involving into the “work-
ing” class of distributions those representatives 
which have the maximal value of the entropy. But 
the entropy approach to robust control in (Bernatskii 
et al., 2000) leads nowhere since it is well known 
that for a given variance there exist unique density 
having the largest entropy among all the distribution 
densities, the Gaussian one, what, say, may be di-

rectly received from the fundamental paper of Janes 
(1957). Therefore there is nothing to select within the 
entropy based approach of Bernatskii et al. (2000). 
From another hand side, numerical examples in the 
same paper of Bernatskii et al. (2000) demolish the 
assumption on association of the magnitude of the 
entropy of the plant output model variable distribu-
tion and the set of the admissible controls. Thus, the 
approach of Bernatskii et al. (2000) should be con-
sidered as a delusion (Chernyshov, 2005). 
 
In the present paper, a refined statement of the con-
trol problem of (Bernatskii et al., (2000) is proposed 
and the corresponding approach to solve it is derived. 
The approach is oriented to take into account condi-
tions of existence of the domain of the admissible 
controls (non-emptiness of the intersections men-
tioned above), as well as to provide unambiguous 
selecting the “worst” probabilistic distribution of the 
plant output model variable. Various numerical ex-
amples are presented to confirm the theoretical infer-
ences. Specifically, a condition to select not more 
than two representatives, (in the case of asymmetric 
distributions) or unique (in the case of symmetric 
distributions) representatives of the “worst” probabil-
ity densities of the plant output model variable, and a 
domain of admissible controls corresponding to that 



density. Again, for the case of symmetric distribution 
densities, an extension of the domain of admissible 
controls has been obtained by use of modifications of 
the Gauss inequality. 
 
 
2. REVISING A ROBUST CONTROL PROBLEM 

STATEMENT 
 
Bernatskii et al. (2000) has proposed a method of 
finding a robust control for a non-linear industrial 
plant. A mathematical model of the output variable y 
of the plant, a technological process (TPr), is repre-
sented in the form 

 
{ } ( )muufyMf ,,, 10 K=== XXU          (1) 

 

where ( )Tmuu ,,1 K=U  is the vector of control vari-

ables, ( )Tnxx ,,1 K=X  is the vector of input con-
trolled variables, and { }⋅⋅M  stands for the condi-
tional mathematical expectation. The entity of the 
method is using an assumption that the probability 
distribution density (PDF) of the plant output model 
variable belongs to a class of distributions K whose 
make-up is not known a priori. The class is repre-
sented by conditional probability distribution densi-
ties kjfyp j ,,1),,,( K=ϕ  whose parameters are 
determined at the each step (at the time interval of 
forming the control) via experimental data. Here φ is 
the conditional mean square deviation. “The objec-
tive condition on the plant performance is repre-
sented by the following probabilistic inequality 

 
[ ]{ } 0, PBAyP ≥∈                        (2) 

 
where 0P  is a given level of probability, which is 
considered technologically plausible, and [ ]BA,  is a 
technological tolerance on the output variable y, 
whose distribution belongs to the distribution class 
K.” (Bernatskii et al., 2000 (p. 1004). For the each 
representative kjfyp j ,,1),,,( K=ϕ  of the class K 
in accordance to the probability criterion a domain of 
the admissible controls is determined, the so-called 
domain of the admissible controls. It is formed in the 
following manner. “For every representative in the 
distribution class under consideration, the following 
equation is solved with respect to f (under the as-
sumption that const=ϕ ): 

 

kjPdyfyp
B

A
j ,,1,),,( 0 K==∫ ϕ .         (3) 

 
For unimodal, symmetric, or asymmetric PDFs, 
which are commonly used in the description of the 
probabilistic properties of the output variables of a 
TPr, each of the equations (3) has two roots 
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condition (2) is fulfilled for the j-th representative.” 
(Bernatskii et al., 2000 (p. 1004)). 
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of these intervals for a single-output plant is non 
empty, since any particular value of f is a conditional 
mathematical expectation for all representatives in 
the class K. Using regression (1), intersection (4) is 
mapped on the space of controls; with account for 
technological limitations on the controls, this map-
ping defines a domain Sr of robust control in the 
space of controls” (Bernatskii et al., 2000 (p. 1005). 
 
In turn, to select these representatives an entropy 
approach is, in particular, used by Bernatskii et al. 
(2000). The entropy approach is based on involving 
into the “working” class of distributions those repre-
sentatives which have the maximal value of the en-
tropy. “Since entropy is a measure of uncertainty in 
the system, the control in the case is synthesized 
against the worst (the most uncertain) conditions that 
can be proposed by the Nature. It is assumed that if 
the control problem may be solved against the worst 
conditions, than it can be also solved under more 
favorable (less uncertain) conditions” (Bernatskii et 
al., 2000 (pp. 1006-1007)). 
 
Example 1. Let us demonstrate numerically that in-
tersection (4) may be empty. The method is to derive 
plots of the functions 
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for several densities ),,( ϕfyp j  under a fixed φ. In 

fact, figure 1 presents plots of the functions )( fΨ  in 
(5) calculated for the Gaussian (solid line) and log-
normal (dotted line) distributions at the following 
data: 310−=A , 5.0=B , 1.0=ϕ . It is clearly seen 
that, say, for the level 980.00 =P  intersection (4) is 
non-empty, for the level 985.00 =P  intersection (4) 

is empty for non-empty intervals 
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jj ff 12 ,  and the 

robust control problem solution will not already ex-
ist, for the level 990.00 =P  already one of the two 

intervals 
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995.00 =P  both the intervals 
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jj ff 12 ,  are empty. 
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Fig. 1. Towards emptiness of intersection (4) for the 

Gaussian (solid line) and log-normal (dashed 
line) distributions at 310−=A , 5.0=B , 

1.0=ϕ . 
 
Going back to the opinion of Bernatskii et al. (2000) 
that the intersection F̂  in formula (4) “is non empty, 
since any particular value of f is a conditional 
mathematical expectation for all representatives in 
the class K”, one should make an evident remark that 
the required level of the probability 0P  should not 
absolutely correspond to any particular value of the 
conditional mathematical expectation f. 
 
Again, the entropy approach to robust control in 
(Bernatskii et al., 2000) leads nowhere since it is 
well known that for a given variance there exist 
unique density having the largest entropy among all 
the distribution densities, the Gaussian one, and there 
is nothing to select. 
 

Example 2. Let in formula (4) the intersection F̂  
exist. Demonstrate numerically that determining F̂  
does not depend of the magnitude of the entropy of 
the distribution densities. 
 
As well as above, figures 2 and 3 present plots of the 
functions )( fΨ  calculated for the Gaussian (dark 
line), logistic (dotted line), and Student (light line) 
distributions at the following data: 10=A , 20=B . 
In the figures, 0.2=ϕ  for figure 2, and 0.5=ϕ  
for figure 3. At that, figure 2b presents a refined 

scale representation of changing the density choice in 
the “neighbourhood” of the level of 980.00 =P . No 
special visual tools are required to insure that for a 
constant variance selecting the “worst case” distribu-
tion density depends on the required level of 0P  in 
(2) (or in (3)), but by no means on the entropy of the 
distribution. 
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Fig. 2. Towards independence of determining F̂  to 
the magnitude of the entropy of the distribution 



densities for the Gaussian (dark line), logistic 
(dotted line) and Student (light line) distributions 
at 10=A , 20=B , 0.2=ϕ . 
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Fig. 3. Towards independence of determining F̂  to 

the magnitude of the entropy of the distribution 
densities for the Gaussian (dark line), logistic 
(dotted line) and Student (light line) distributions 
at 10=A , 20=B , 0.5=ϕ . 

 
 

3. AN IMPROVED APPROACH 
 
In the present section, ways of improving the concept 
of Bernatskii et al. (2000) are proposed. The main 
step in that direction is determining conditions assur-
ing non-emptiness of the intersection F̂  in formula 
(4). At that, it is absolutely obvious that the width of 

the intervals 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
jj ff 12 ,  in formula (4) and, finally, 

non-emptiness of their intersections are determined 
by two “parameters” of the initial problem statement, 
namely: 0P  and ϕ. As it has been clearly demon-
strated by the presented examples, enlarging the 
probability 0P  or/and enlarging the mean squared 

deviation ϕ lead to emptiness of the intersection F̂  
in formula (4). Then, it would be naturally to assume 
an existence of a “balance” between the values of 0P  
and ϕ, while meeting the balance would assure non-
emptiness of the intersection F̂  in formula (4). 
 
Let, at first, the class K is formed by the representa-
tives being symmetric unimodal distribution densi-
ties. Then, by use of the Tchebyshev inequality, tak-

ing into account the above presented notations, and 
by virtue of formula (2), one may write 

 

2

2

0

2

1

⎟
⎠
⎞

⎜
⎝
⎛ −

≤−
AB

P ϕ .                       (6) 

 
At that, within the present paper context, just the 
condition of achieving the equality in formula (6) is 
of special interest. Thus, the value 
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is that maximal magnitude of the variance at which 
one may guarantee non-emptiness of all the intervals 
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and given a width of the interval [ ]BA, . For each 

maxϕϕ <  non-emptiness of the intersection F̂  in 
formula (4) is even more so assured, both for the 
symmetric and asymmetric distributions, and, e.g. 
figure 4 for the Gumbel distribution density (i.e. 
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are the distribution’s parameters). 
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Fig. 4. Towards “embedding” of the intervals 
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jj ff 12 ,  in (4) as φ increases for the Gumbel 



distribution (at 10=A , 20=B , and 2=ϕ  (light 
line), 5.2=ϕ  (dotted line), 3=ϕ  (dark line)). 

 
Let now the class K be represented by both symmet-
ric and asymmetric unimodal distribution densities. 
Then, basing on the Tchebyshev inequality one may 
write (formally, more strict than that of (6)) condi-
tion 
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where ( )⋅M  stands for the mathematical expectation 
symbol, ς  is an arbitrary point from the interval 
[ ]BA, . At that, analogously to the preceding consid-
erations, within the present problem context, just 
achieving the equality in formula (8) is of special 
interest (8). In turn, minimization of the expression 
standing in the right hand part of inequality (8) 
would only promote to achieving the equality. From 
the properties of the function { }( )2,min ςς −− BA  
and by virtue of the equality 

( ) ( )( )222 ςϕς −+=− yMyM , it follows directly 
that 
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while the equality in formula (9) is achieved if and 

only if 
2

BA+
=ς  and ( ) ς=yM . 

 
Thus, from the above presented, it follows that the 
condition 
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is sufficient for non-emptiness of the intersection F̂  
in formula (4) for both symmetric and asymmetric 
(unimodal) densities from the class K (due to the fact 
that by virtue of condition (10) all the intervals 
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jj ff 12 ,  contain the middle of the interval 

[ ]BA, ). 
 
More over, since the center of the interval [ ]BA,  is 

always “captured” by the intervals 
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condition (10), the condition of unimodality may 
thus be omitted. At that, of course, for a given distri-
bution, only two roots of equation (3) being the clos-

est to the point 
2

BA+  from the left and right should 

be chosen.  
 

The above presented example 1 evidently demon-
strates that under violation of condition (10) the 
middle of the interval [ ]BA,  may not belong to all 

the intervals 
⎥
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⎢
⎢
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jj ff 12 ,  in formula (4): within the 

conditions of example 1, condition (10) implies the 
following (upper) bound for the mean squared devia-

tion: 
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as 995.00 =P  what contradicts to the considered 
magnitude of the value 1.0=ϕ . 
 
In the paper of Bernatskii et al. (2000), a hypotheti-
cal class of distribution Kh is given, from which one 
the selection of the “worst” densities is performed. 
To be involved into that class, the following distribu-
tions have been considered: uniform (note that it is 
not a unimodal distribution in contrast to the pre-
liminary postulation of Bernatskii et al. (2000)), 
Gaussian, logistic, log-normal, triangular, Gumbel, 
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and b are the distribution’s parameters), Weibull, 
Tukey. At that, as a basic reason of non-involving a 
distribution into the class Kh, the paper of Bernatskii 
et al. (2000) refers to “complexity” of an explicit 
analytical expression for its entropy. Due to that rea-
son, the paper of Bernatskii et al. (2000) has found to 
be non-reasonable to involve into the hypothetical 
class Kh the distributions of Weibull, Pearson, John-
son, gamma-distribution, and a number of other 
ones. Hardly ever such reasoning is acceptable as a 
justification (even, non-formal one) of a criterion to 
form the hypothetical class of distributions Kh. In 
contrast to the paper of Bernatskii et al. (2000), con-
dition (10) derived in the present paper by no means 
restricts (even disregarding the condition of unimo-
dality) forming the hypothetical class of distributions 
Kh, if one will take into account that a numerical 
(while another one is not required) solution of equa-
tions (3) possesses no difficulty for any explicitly 
given distributions ),,( ϕfyp j , ,...,,1 kj K= . 
 
 

4. IMPROVING CONDITION (10) FOR 
UNIMODAL DISTRIBUTIONS 

 
In spite of its universal form which is suitable for all 
types of probability distribution densities, condition 
(10) looks rather rough and imposing exhaustively 
strict limitation to the admissible mean squared de-
viation with regard to the unimodal distributions. 
Under the condition of unimodality of the probability 
distribution functions, condition (10) can be refined 
by use of the above technique accompanied by some 
additional results in the field of the probability the-
ory inequalities. Specifically, one should apply the 
following generalization (Vysochanskij and Petunin, 
1985a) of the Gauss inequality: 
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where ( )20
2 xM −= ξθ , 0x  is an arbitrary real 

number, and ξ  is a random value having a unimodal 
distribution (the conventional Gauss inequality re-
quires 0x  to be the mode coinciding with the mean 
of that unimodal distribution; and inequality (11) is 
also referred as the Vysochanskij-Petunin inequal-
ity). 
 
Let, similarly to (8), ς  be an arbitrary point from the 

interval [ ]BA, . Imposing in (11) ςξ
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At that, analogously to the preceding Section consid-
erations, within the present problem context, just 
achieving the equality in formula (12) is of special 
interest. In turn, minimization of the expression 
standing in the right hand part of inequality (12) 
would only promote to achieving the equality. Act-
ing in the above Section manner, the minimum of the 
right-hand part of formula (12) is achieved if and 

only if 
2

BA+
=ς  and ( ) ς=yM . Thus from (12) 

and the presented considerations, the following suffi-
cient condition which should be imposed on the ad-
missible magnitude of the variance 2ϕ  is 
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Going back to the above considered numerical illus-
tration to example 1, one can conclude that under 
violation of condition (13) the middle of the interval 

[ ]BA,  may not belong to all the intervals 
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jj ff 12 ,  

in formula (4): condition (13) implies the following 
(upper) bound for the mean squared deviation: 

0.045842≤ϕ  as 985.00 =P  and 0.026453≤ϕ  as 
995.00 =P  what also contradicts to the considered 

magnitude of the value 1.0=ϕ . 
 
 

5. CONCLUSIONS 
 
Conditions (10), (13) derived, provide thus a possi-
bility to select within the class K not more than two 
(in the case of asymmetric distributions) or one (in 
the case of symmetric distributions only) “worst” 
distribution densities of the plant output model vari-
able and a domain of the admissible robust controls, 

corresponding to that density. In entity, the first 
(equality) parts of conditions (10) and (13) also de-
termine the corresponding limit admissible magni-
tudes max

0P , and minΔ  of the probability 0P , and 
the width Δ of the interval [ ]BA,  respectively: 

( )Δ= ,1
max

0 ϕgP , ( )02min , Pg ϕ=Δ , meeting to one 
of them under given the rest two magnitudes is a 
sufficient condition of non-emptiness of intersection 
(4). 
 
If conditions of the solved practical problem state-
ment enable one to restrict the consideration to the 
class of unilateral criterion only, say { } 0PByP ≥≤ , 
than for the unimodal distribution densities a condi-
tion being similar to (13) may be obtained by use of 
corresponding generalizations of probabilistic ine-
qualities (e.g. that of (Vysochanskij and Petunin, 
1985b); what, in turn, will enable one to extend the 
domain of the admissible robust controls. 
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