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Abstract 

In this review in general the dynamic 
effects are considered and described, caused 
by different discrete and distributed systems 
with impacts. We will study traditional and 
modern models of impact pairs and we will 
show the results of some interesting 
experiments. And we will show some new 
dynamic effects. 

 
1. Systems with Serial Impact Pairs 

Systems with serial impact pairs include 
vibro-impact systems with large numbers of 
degrees of freedom in which all elements 
except for outer ones are involved in two or 
more impact pairs.  

Some of the typical models of such 
systems are shown in fig.1. 

 
Fig.1 

A number of systems with serial impact 
pairs were examined in the works, where 
periodic motions in one-dimensional basic 
systems of the type as shown in fig.1,a,b, are 
analyzed. Motion of the j-th element during the 
time interval between collisions is given by the 
equation  

      ..          . 
mjuj + bjuuj = 0.                       (1) 

                               .                           .                          
    u(k)=k, u(k+0)=-Rku(k-0),  
                      . 
   Jk= mk(R+1)ut(k-0),               (2) 

where R - coefficient of velocity restoration at 
impact, which here is supposed to be straight 
and central;  - set-up clearance (interference) 
value; m = m1m2/(m1+m2) - reduced mass of 
colliding bodies; uk = xk - xk-1; k and Jk – phases 
and impulses  of impacts. 

Evidently, equations for impact elements of 

the type (1) can be significantly generalized. 
However in such case motion of a chain with 
serial impact pairs may become extremely 
complex. 

Systems with serial impact pairs were 
examined using the fitting technique. In so 
doing one-dimensional chains of point bodies 
are considered and it is assumed that energy 
dissipation occurs only as result of impacts. 
The analysis is simplified by the obvious 
condition that in periodic modes impact forces 
pulse value in all impact pairs J=const. For 
chains of the type like in fig.1,a with force 
closure the pulse value J=QT (T - process 
period), and dynamical length of a chain is set 
to provide this preliminary determined impulse. 
For chains with a given length impulse value 
can be found as a solution of a periodic 
problem. 

It is easy to find out that in a one-
dimensional chain of balls with equal masses m 
and absolutely elastic impacts the pulse J 
imparted to the first ball propagates along the 
chain undistorted as a peculiar kind of diffusive 
wave of the impact force Ф(t,x)=J(vt-xj), where 
v=J/m;  xj - coordinates  of initial locations of 
the balls at rest; j - number of a ball in the 
chain. Evidently, this wave can reflect from a 
stationary barrier changing the propagation 
direction.  

 
2. Systems with Parallel Impact Pairs 

Systems with parallel impact pairs include 
complex vibro-impact systems, in which some 
of the elements of one (basic) subsystem 
constitute impact pairs with elements of other 
subsystems, and each element of the basic 
subsystem can be incorporated in only one 
impact pair. Examples of such systems are 
shown in fig.2. 

 
Fig.2 

Fig.2,a shows a system with basic 
subsystem presented by a string with N balls 



  

fixed on it. In this case the balls collide with a 
rigid one-side restrictions, which constitute the 
second subsystem. Naturally, the restriction 
may also be double-sided. Besides that, the 
balls may constitute impact pairs with elements 
of more complicated form. Fig.2,b displays a 
transversely oscillating string or beam 
interacting with point-wise restrictions. Here the 
subsystem with distributed parameters acts as 
a basic. 

Using the dynamic characteristic of an 
impact pair obtained earlier, we write motion 
equations for a system with N parallel impact 
pairs (fig.2,a) 

 ..                  .  
m1u1+b1u1+(c1+c2)u1-c2u2+Ф1(u1,utj)= =P1(t), 
      ..           .                                                                          
mjuj+bjuj+cj(uj-uj-1)+cj+1(uj-uj+1)+             
+Фj(uj,utj)=Pj(t),      j=2, N-1                     (3) 
         ..               .      

  mNuN+bNuN+(cN+cN+1)uN-                 
-cNuN-1+Ф(uN,utN)=PN(t), 
where uj - coordinate of the j-th body; mj - 

it's mass; cj – stiffness of the j-th string portion;  
bj  - coefficient of resistance to the motion of the 
j-th body; Pj(t) - driving force affecting the j-th 
body (j=1,...,N);  Фj(uj,uj) - dynamic 
characteristic of the j-th impact pair. 

Independent of the system structure the 
equations, etc. may be written uniformely in the 
operator form. For the required movements 
field u(x,t): 

               N 
u(x,t)= L(x,xk;p)[Pk(t) -Ф(uk,puk)], (4) 
               k=1 

where the dynamic compliance operators 
L(x,y;p) are determined by the structures of the 
initial interacting subsystems. 

For description of the system with 
concentrated parameters in the operator 
equation we should set x=xj. 

In case of a periodic outside excitation in 
order to find the T-periodic modes instead of (4) 
we can obtain: 

                                       N    T 
u(x,t) = u0(x,t) +   ∫(x,xk;t-)(uk,uk)ds,   (5) 
                          k=1  0 

where u0(x,t)  -  steady-state movement 
field under inducing forces in the absence of  
impact  interactions;  (x,xk;t-s)  -  periodic  
Green function, compliant  to  the operator 
L(x,xk;p). 

If assumed that like above the impact is 
momentary and acts one time during the 
motion period, so that the function (u,ut) can 
be presented as a combination of singular 
distributions, the equations (5) can be reduced 
to the following representation of the vibro-
impact process: 

                                       N 
u(x,t) = u0(x,t) +  Jk (x,xk;t-tk) (6)            
                                      k=1 

where Jk - impact forces impulse in the k-th 
impact pair; tk - moment of the impact in this 
pair. Representation (6) is called "2N-
parametric". The unknown motion parameters 
can be sought from the impact conditions of 
impucts. 

The solutions obtained should be analysed 
regarding the stability and feasibility of 
geometric conditions of the type uk(x,tk)≤k.The 
final solution of the problem in a visible 
analytical general form can be obtained for a 
limited number of models of such kind, 
however, for particular parameters it is almost 
always possible to find a corresponding 
numerical-analytical solution. Besides that, 
basing on the representation (6) it is possible to 
build up some approximate solutions. 

Further we will discuss some effects 
revealed as a result of analysis the model (5) 
with a periodic structure: for each j all mj, bj and 
cj values are the same and equal to m, b, and c 
correspondingly. The outside excitation was 
chosen sinusoidal. 
The main result  is the discovery of existence of 
periodic modes with synchronous impacts in 
remote impact pairs. Such modes were calls 
“claps” or “puffs”. At excitation of these modes 
the string with the balls fixed on it generates 
one-, two- or multitrapezoid forms quite similar 
to the corresponding inherent oscillations forms 
of a linear system in terms of alternation of 
nodes and crests of waves, and feasible in 
frequency areas situated at the right from the 
inherent frequencies of the corresponding 
linear system. Fig.3 shows an example of claps 
for two lowest forms in the system with six 
symmetrical impact pairs. The trapezoid form 
appears even with two impact pairs. 

 
Fig.3 

3. Systems with distributed impact pairs 
In this chapter we will briefly examine the 

problems concerned with the models of 
systems with distributed impact pairs. 

References considered models of 
distributed linear media of complicated 
structure. The most specific feature of 
mentioned structures is the presence of two 
main "medium parts", namely: "carrier" and so 
called "attached" parts. Dynamic description of 
such systems, in general, consists of two 
groups of motion equations - reflecting "carrier" 
and "attached" subjects constrained behavior 
respectively. Likewise all the models in the 



  

multipolar mechanics, the concept of a point is 
a subject of significant revision: its state can be 
defined by unspecified number of kinematic 
parameters. 

Such models utilization arise to be 
productive for solution of some practical 
problems, such as dynamical analysis of vibro-
states of complicated mechanical structures, 
consisting of, said, distributed single 
dimensioned "carrier" and of gross number 
flexural "attached" solid devices. Monograph, 
particularly, considered models of media with 
non-linear damping. 

At the same time, paper considered the 
problem of random oscillations of a distributed 
carrier rod with gross number of separated 
impact pairs being attached flexural along it. 

It seems that mentioned considerations 
could be useful by dynamic models creation for 
the systems consisting of "carrier" and 
"attached" parts with multiply breaks in it. Due 
to the system nature the possibility of different 
type collisions arises in the "attached" 
subsystems. 

Then, unlike the approach of where it was 
assumed that the impacting elements 
concentration is low, we consider completely 
distributed model. Thus, assuming the impact 
pairs to be "spreader" within a certain space, 
we can use the concept of distributed impact 
elements. 

Now, let's overview briefly some papers 
concerning the distributed impact elements. We 
can obtain the model of distributed impact 
element by at least two ways. 

Firstly, in some cases it appears impossible 
to disregard wave process arising in the impact 
pairs itself. Impacting bodies can't be 
considered as the solid bodies since the 
lengths of the waves generated by collisions 
are comparable with the impacting surfaces 
dimensions. 

Secondly, considering the dynamic system 
with amount of convenient impact pairs to be 
large enough we can perform long-wave 
approximation and transit to the distributed 
model with distributed impact element.  

  
Fig.4 

Let's consider vibrating string or supported 
flexible beam, colliding with obstacles of 
various kinds. For example, using the 
Timoshenko beam model and denoting by 
u(x,t) and y(x,t) - ux(x,t) the beam 

instantaneous linear and angular deflection 
shape, Ф(u) impact force distribution, the 
motion equations will be written as following: 
U2t - k'FGu2x + k'FGy2x+ Ф(u) = P(x,t);  EГy2x- 
k'FGux - ГF-1y2t = 0 with the boundary 
conditions u(0,t) = u(l,t) = 0 , etc. 0<x< l. -
∞<t<∞. Singular function Ф(u) is defined by 
type of the obstacle and properties of model. 
The standard set of parameters and modules 
enters into equation Timoshenko.  

      In spite of the complexity of the motion 
equations, in some cases it appears possible to 
perform not only the corresponding numerical 
analysis of mentioned models, but to obtain an 
approximate analytical representation of the 
required motion distributions as well. These 
representations can be obtained by means of 
the modified frequency-time analysis of vibro-
impact processes and other methods of the 
modern non-linear mechanics. In many cases 
the equations of motion can be reduced to the 
following "two-functions" representation of the 
vibro-impact process [u(x,t)]: 

u(x,t)=u0(x,t)-J(z)[x,z;t-f(z)]dz,  

                                 X  
field under inducing forces in the absence 

of impact interactions; X – some integration  
area ; (x,z;t) - PGF compliant to some 
operator L(x,z;p) (built up similarly the motion 
equation ). Unknown two functions J(x) (the 
impact force impulse distribution) and f(z) (the 
impact force phase distribution) can be sought 
from the impact conditions. 

Calculations of a number of concrete 
systems enable to find out and systematize 
various dynamical effects arising there. Let's 
note the most specific and impressive ones: 

 
4. Some principal dynamic effects.  

One-dimensional extended objects (strings, 
beams, etc.) vibrating near straight obstacles: 

- arising of trapezoid standing waves 
("claps"), characterized by synchronous coming 
of distant points of distributed systems to the 
restrictions (fig.4); 

- emergence of higher forms of claps 
(multitrapezoid standing waves); 

- arising, as the claps occur, of the effects, 
characteristic to "impact oscillators": "delaying", 
multivaluedness of "amplitude"-and-frequency 
characteristic, feasibility of "hard excitation" and 
others; 

- arising  of  near-periodic  standing waves; 
-retention of trapezoid profiles of standing 

waves at different kinds of outside and self-
running excitation; 

- arising of standing waves characterized 
by specific profiles of complex nature (quasi-
adhesion, emergence of "inside out" 
configurations etc.) 



  

5.Some results of the experiments 
(waves picture) 

The experiments with a distributed impact 
element were carried out at the stand 
schematized in fig.5. Here a rubber tourniquet, 
one end of which is connected to the force 
sensor FS fixed on the carriage K1, and the 
other is linked with the rod of electro-dynamic 
vibrator B, was used as a distributed impact 
element РЭ. The tourniquet tension can be 
adjusted by moving the carriage C1 using the 
screw S1. It's oscillations are restricted by the 
extended plate П, fixed on the carriage C2, and 
moving it with the micrometric screw S2 
enables to change the clearance between the 
tourniquet and the restriction. The vibrator V is 
energized by the control generator of sinusoid 
oscillations CG. 

The signal from the force sensor FS, 
proportional to the angle of cord rotation was 
registered by the cathode-ray oscillograph O. 
The tourniquet's standing waves were 
observed in stroboscope light, generated by 
movement analyzer MA, which lamp's L bursts 
are synchronized with the control generator. 
The phase-rotator built in the analyzer enables 
to stop and photograph (with camera C) the 
tourniquet's form at any movement phase, and 
setting of a small detuning between the 
frequencies of bursts and excitation enables to 
observe a slowed-down display of evolution of 
standing waves. 

The stand allows setting the second 
restriction), which enables to examine systems 
with both one-side and two-side restrictions of 
the string oscillations.  

We cite some results of the examination of 
periodic standing waves, observed at this unit. 

At excitation frequencies <1<1, where 
1 - the first inherent frequency of the linear 
system, w1 - the frequency at which pre-
resonance branch of amplitude-and-frequency 
characteristic passes the restriction level, 
sinusoid standing waves arise without contacts 
with the restriction and with amplitudes within 
the clearance. 

 
Fig.5 

In the range 1<<1 the waves were 
found called "on-running without rebound". 
These waves are different in that the string 
points reaching the restriction stop immediately 
and rest at it for some time. As this happens, 
the wave running on the restriction "spreads" 
along it until the string takes a certain "final" 

configuration. Then the string points leave the 
obstacle and the process recurs. 

At passing of the linear resonance 
frequency =1 on-running waves disappear 
and resonance modes of the "claps" type arise. 
At puffs points of a certain tourniquet part 
concurrently reach the restriction and rebound 
immediately. The characteristic standing wave 
evolution in a system with one-side restriction is 
shown in fig.6,a where it is evident that 
intermediate trapezoid wave configurations at 
the end position degenerate into an isosceles 
triangle, as predicted by the theory.  

 
Fig.6 

Claps are excited in the frequency range 
1<<*, where *>2, * - the ultimate puffs 
excitation frequency, 2 - frequency, at which 
the over-resonance branch of the system's 
resonance curve crosses the restriction level. In 
the area 2<<* in par. 

At the same time with claps there exist 
sinusoid standing waves within the clearance 
without contacting the restriction. Claps-type 
modes are of a clearly defined non-linear 
resonance nature; the essential non-linear 
effects typical for an ordinary impact oscillator 
are characteristic for these modes: delaying by 
frequency and amplitude, quenching of 
oscillations, feasibility of hard starting of vibro-
impact modes. Similar effects were also 
observed in the neighborhood of higher forms 
of linear system oscillations when either one-
side or two-sides restrictions were installed.  

 
Fig.7 



  

And also similar effects were observed in 
case of lattices, point-mass obstacles (in fig.7 
the string in various phases of movement in 
systems with one and two obstacles is shown) 
and at interaction with T-obstacles (the typical 
structure of a standing wave is shown in fig.8).  

 

 
Fig.8 

 
5. The experimental study of systems with 
parallel impact pairs  

We can arrive to the concept of distributed 
impact element by continualizing of discrete 
systems. An example of impact element 
obtained in such manner is so called 
"concentrated beads", consisting of a string 
with closely located beads on it. The 
experiments with such system were carried out 
at the stand similar to the above described, 
where a distributed impact element was 
simulated by a rubber tourniquet with 50 beads 
of 5 mm diameter located uniformly on it. In this 
system when passing through frequency range 
the qualitative character of waves configuration 
retains: on-running (fig.6,b) without rebounds in 
pre-resonance area and claps in over-
resonance area of the linear system. This 
system's behavior differs in that standing 
waves were detected in the neighborhood of 
the linear resonance frequency, given the title 
"on-running with rebound". At such modes 
central beads bumping against the restriction 
rebound immediately, and then the same 
happens with neighboring beads as they 
approach the restriction. As this happens the 
wave forms a configuration, central part of 
which is expanding progressively along the 
restriction and has an "inside-out" form (fig.6, 
b). Such waves arise if excitation intensity 
extends a certain ultimate level. 

A system, containing small number of 
beads cannot be reduced to a distributed 
impact element and represents a typical 
example of an object with parallel impact pairs. 
Experiments with a "rarefied" system, 
containing 3 beads, were performed at the 
same stand, supplied with impact detectors, 
which present restrictions. In the frequency 
range 1<<1 there were "sluggish" modes 
on record with collisions of the central bead, 
sometimes accompanied with rattling. In this 
area there were also irregular vibro-impact 
modes observed. 

In the band 1<<* there were recorded 
stable periodic modes of the claps type with 
concurrent collisions of all the three beads, 
which were clearly corroborated by the 
oscillograms of the signals from the impact 
detectors. 

At further increasing of frequency after 

passing the third inherent frequency stable 
confined oscillations of the soliton (breather) 
type were observed in a thin frequency range 
.At this mode, which can be obtained by 
delaying of one-bead oscillations by amplitude, 
this bead performs intensive oscillations with 
collisions, while the other two are almost at 
rest. 
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